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Abstract

PRONTO 3D is o three-dimensional transient solid dyvnamics code for analyzing large
deformations of highly nonlinear materials subjected 1o extremely high strain rates.
This Lagrangian finite element program uses an explicit tinie integration operator to
integrate the equations of motion. Eight-node uniferm strain hexahedral elements are
used i the finite element formmlation. A number of new numerical algorithis which
have been developed for the code are described in this report. An adaptive time step
control wlgorithm is deseribed which greatly improves stahility as well as performance
in plasticity problems. A robust hourglass control scheme which climinates hourglass
distortions without disturbing the finite element solution is included. All constitutive
modelz in PRONTO are cast in an unrotated configuration defined using the rotation
determined from the polar decomposition of the deformation gradient. An accurate
incremental algorithm was developed to determine this rotation and is described in
detail. A robust contact algorithm was developed which allows for the impact and in-
teraction of deforming contact surfaces of quite general geometry. Numerical examples

are presented to demonstrate the utility of these algorithms.
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1. INTRODUCTION

PRONTO 3D is a finite element program for the analysis of the three-dimensional
response of sohid bodies subjected to transient dynamic loading. The program includes
nonlinear constitutive models, and accurately analyzes large deformations which may
lead to geometric nonlinearities. PRONTO is a powerful tool for analyzing a wide
variety of problems, including classes of problems in impact dynamics, rock blasting,

and accident analyses.

PRONTO 3D is a direct descendant of the PRONTO 2D [1] code and readers will
recognize the similarity between this report and Reference [1]. We have tried whenever
possible to keep the theory and algorithms the same in both codes. The only notable
exception to this is that the contact algorithm for the three-dimensional code is by

necessity quite different.

We developed a flexible, problem-oriented language for the input to PRONTO
which allows the user to define a complex mechanics problem with a few concise com-
mands. The user instructions are simmilar in PRONTO 2D and PRONTO 3D. Expen-
ence has shown that after a user has gained some experience with the code, reference
to the user’s instructions (Appendix A) is seldom nceded. There are no references
to node or element numbers in the problem definition. All boundary conditions are
specified through the concept of node and element side sets which are defined using
the GENESIS [2] mesh definition data base. The GENESIS data base is a subset
of the EXODUS [3] finite element data base. PRONTO ccontains no mesh genera-
tion or post-processing capabilities; it relies on external mesh generators and external
post-processors. All post-processing of the finite element results is accomplished by
accessing the EXODUS data base that PRONTO writes during the analysis.

The development of PRONTO was motivated by the need for a code which could
serve as a testbed for research into numerical algorithms and new constitutive models
for nonlinear materials. Towards this goal, the code contains a well-documented and
casy-to-use interface for implementing new constitutive models (Appendix C). Com-
plete documentation of the code architecture and computer storage requirements is
provided in Appendix B.

PRONTO is written in completely standard FORTRAN [4]. Any system depen-
dent coding (such as the determination of the date or the memory management) is
part of the SUPES [5] package. The only input/output units used by PRONTO are 5,
6,9, 11, 30 and 32. Their use is described in Table 1.1.

11
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Table 1.1. INPUT/OUTPUT Units
| Unit Use _
{r 5  Formatted input instructions for PRONTO 3D
| 6 Formatted output from PRONTO 3D s
' 9 Unformatted GENESIS mesh file N

11 Unformatted EXODUS post-processing file
30 Unformatted restart output file

I 32 Unformatted restart input file




2. GOVERNING EQUATIONS

In this chapter, we present the underlying continuum mechanics concepts which
are necessary o follow the development of the numerical algorithms in the following
chapters. Bold face characters denote tensors. The order of the tensor is implied by
the context of the equation.

2.1 Kinematics

A material point in the reference configuration By with position vector X occupies
position x at time t in the deformed configuration B. Hence we write x = x(Z,t).
The motion from the original configuration to the deformed configuration shown in
Figure 2.1 has a deformation gradient F given by

Jx
F=— F|>0. 2.1)
Applying the polar decomposition theorem to F':

F=VR = RU (2.2)

where V and U are the symmetric, positive definite left and right stretch tensors,
respectively, and R is a proper orthogonal rotation tensor. Figure 2.1 illustiates the
intermediate orientations defined by the two alternate decompositions of F defined by
Equation 2.2. The determination of R as defined by Equation 2.2 presents a significant
numerical challenge. In Section 3.3, we describe the incremental algebraic algorithm
that we use to determine R.

The velocity of the material point X is written as v = x where the superposed dot
indicates time differentiation holding the material point fixed. The velocity gradient is
denoted by L and may be expressed as

ov ov 0X .1 v
= e— = —— —— . 9.
Ox 0X 0x FF (2:3)

The velocity gradient can be written in terius of its symmetric (D) and antisymmetric
(W) parts, |
L=D+W . (2.4)

Using the right decomposition from Equation 2.2 in Equation 2.3 gives

L=RR +RUU'RT . (2.5)

13
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Dienes (6] denoted the first term on the right-hand side of Equation 2.5 by O :
. T
1=RR . (2.6)

Both W and @ are antisymmetric and represent a rate of rotation (or angular velocity)
about some axes. In general, @ # W. The difference arises when the last term
of Equation 2.5 is not symmetric. The symmetric part of UU™ is the unrotated
deformation rate tensor d as defined below (note that both U and U~ are symmetric).

o
-~
~—

d = %(tm" +U-'U) = R"DR (2.

There are two possible cases which can cause rotation of a material line eloment:
rigid body rotation and shear. Since total shear vanishes along the axes of principal
stretch, the rotation of these axes defines the total rigid body rotation of a material

point.

It is a simple exercise in vector analysis to show that Equation 2.6 represents the
rate of rigid body rotation at a material point (as shown by Dienes [6]). It is equally
simple to show that W represents the rate of rotation of the principal axes of the rate
of deformation D. Since D and W have no sense of the history of deformation, they
are not suflicient to define the rate of rotation in a finite deformaiion context.

Line clements where the rate of shear vanishes rotate solely due to rigid body
rotations. These line elements are along the principal axes of U. We will apply a

similar observation below as we derive Dienes’ [6] expression for calculating (1.

Using the left decomposition of Equation 2.2 in Equation 2.3 gives

L=VV ' +vav-! (2.8)

Postmultiplying by V yields an expression which defines the aecomposition of L into
V and Q:
LV=V+vVvQ . : (2.9)

When the dual vector of the above expression is taken, the symmetric V vanishes to
yield a set of three linear equations for the three independent components of 1.

The antisymmetric part of a tensor may be expressed in terms of its dual vector
and the permutation tensor €;;. Define the following dual vectors:

w; = ;5.8 5k (2.10)

w; = e,-jijk . (2.11)

15




Using Equations 2.4, 2.10, and 2.11 in Equation 2.9 results in the expression that
Dienes [6] gave for determining § from W and V;

w=w- 2[V-ItrV]| 'z (2.12)

where

zZ; = e,-jijmDmk . (213)

We observe from the above expressions that £ = W if and only if the product VD
1s symmetric. This condition requires that the principal axes of the deformation rate
D coincide with the principal axes of the current stretch V. Clearly, a pure rotation
1s a special case of this condition since D, and consequently Equation 2.13, vanish.

2.1.1 Stress and Strain Rates

Our constitutive model architecture is posed in terms of the conventional Cauchy
stress, but we adopt the approach of Johnson and Bammann [7] and define a Cauchy
stress in the unrotated configuration. The reader seeking more detail than is presented
here should see Flanagan and Taylor {8]. The “true” stress in the deformed configura-
tion is denoted by T. The Cauchy stress in the unrotated configuration is denoted by
0. These two stress measures are related by

c=RTTR . (2.14)

Each material point in the unrotated configuration has its own reference frame
which rotates such that the deformation in this frame is a pure stretch. Then T is
simply the tensor o in the fixed global reference frame. The conjugate strain rate
measures to T and ¢ are D and d, respectively. These strain rates were defined by
Equations 2.4 and 2.7, respectively.

The Principal of Material Frame Indifference (or objectivity) stipulates that a
constitutive law must be insensitive to a change of reference frame [9]. This requires
that only objective quantities may be used in a constitutive law. An objective quantity
is one which transforms in the same manner as the energy conjugate stress and strain
rate pair under a superposed rigid body motion. The fundamental advantage of the
unrolated stress over the true stress is that the material derivative of o is objective,
whereas the material derivative of T is not.

The Jaumann rate defined below is frequently used in constitutive relationships
to resolve the need for an objective rate of Cauchy stress.

T=T-WT+TW . (2.15)

16




it 1s an easy task to show that the Jaumann rate is objective.

A similar stress rate, called the Creen-Naghdi rate by Johnson and Bammann (7],
can be derived by transforming the rate of the unrotated Cauchy stress to the fixed
global frame as follows:

&§=R6RT =T - QT +TQ . (2.16)

The Jaumann rate and the Green-Naghdi rate are very similar in form. The important
difference between the two is that the Green-Naghdi rate is kinematically consistent
with the rate of Cauchy stress, while the Jaumann rate is not. By this statement we
mean that & is identical to T in the absence of rigid body rotations. It is clear that T
need not equal T under the same conditions since W need not vanish with rigid body
rotations.

A distinct advantage of the unrotated reference frame is that all constitutive mod-
els are cast without regard to finite rotations. This greatly simplifies the numerical
impleinentation of new constitutive models. The rotations of global state variables
(e.g., stress and strain) are dealt with on a global level which insures that all constitu-
tive models are consistent. Internal state variables (e.g., backstress) see no rotations
whatsoever.

The drawback to working in the unrotated reference frame is that we must ac-
curately determine the rotation tensor, R, which is not a straightforward numerical

calculation. We present an incremental, algebraic algorithm to accomplish this task in
Section 3.3.

2.1.2 Fundamental Equations

The equations of motion for the body are the momentum equations
V. T-pu+pfp=0. (2.17)

where p is the mass density per unit volume, 1 is the acceleration of the material point,
and fp 1s a specific (force per mass) body force vector.

We scek the solution to Equation 2.17 subject to the boundary conditions
u=f(¢t) on S, (2.18)

where S, represents the portion of the boundary on which kinematic quantities are spec-
ified (displacement, velocity, and acceleration). In addition to satisfying the kinematic
boundary conditions given by Equation 2.18, we must satisfy the traction boundary
conditions

T-n=s(t) on St (2.19)

17




where St represents the portion of the boundary on which tractions are specified. The
boundary of the body is given by the union of S, and Sr, and we note that for a valid
mechanics problem, S, and Sp have a null intersection.

The jump conditions at all contact discontinuities must satisfy the relation
(T*+T )n=0 on S. (2.20)

where S represents the contact surface intersection and the superscripts “+” and “-"
denote different sides of the contact surface.

The Lagrangian form of the continuity equation is written as
'/.)-ptvI'D:O. (221)

This is satisfied trivially in our formulation since we do not allow mass transport.
Equation 2.21 degenerates to

pV = poVo (222)

where V' is the volume and the subscript “0” denotes a reference configuration.

The conservation of energy principle equates the increase in internal energy per
unit volume to the rate at which work is being done by the stresses plus the rate at
which heat is being added. In the absence of heat conduction

oF,,
Ee=r=

=o:d+pQ (2.23;

where E, is the energy per unit volume, E,, is the energy per unit mass, and @ is
the heat rate per unit mass. The stress o and the strain rate d were discussed in the
Section 2.2.

18




3. NUMERICAL FORMULATION

In this chapter, we describe the finite element formulation of the problem and the
numerical algorithms required to perform the spatial and temporal integration of the
equations of motion.

3.1 Eight-Node Uniform Sirain Element

The 8-node three-dimensional isoparametric element is widely used in computa-
tional mechanics. The determination of optimal integration schemes for this element,
however, presents a difficult dilemma. A one-point integration of the element under-
integrates the element resulting in a rank deficiency which manifests itself in spurious
zero energy modes, commonly referred to as hourglass modes. A two-by-two-by-two
integration of the element over-integrates the element and can lead to serious problems
of element locking in fully plastic and incompressible problems. The eight-point in-
tegration also carries a tremendous computational penalty compared to the one-point
rule. We use the one-point integration of the element and implement an hourglass con-
trol scheme to eliminate the spurious modes. The development presented below follows
directly from Flanagan and Belytschko [10]. We assume that the reader is familiar with
the finite clement method and will not go into a complete description of the method.
The reader can consult numerous texts on the method, for example Reference {11].

The hexahedral element relates the spatial coordinates z; to the nodal coordinates
zi; through the isoparametric shape functions ¢; as follows:

i = zi¢1(€,1,() (3.1)

In accordance with indicial notation convention, repeated subscripts imply summation
over the range of that subscript. The lowercase subscripts have a range of three cor-
responding to the spatial coordinate directions. Uppercase subscripts have a range of
eight, corresponding to the element nodes.

The same shape functions are used to define the element displacement field in
terms of the nodal displacements u;;:

u; = uizPr | (3.2)

Since the same shape functions apply to both spatial coordinates and displacements,
their material derivative (represented by a superposed dot) must vanish. Hence, the
velocity field may be given by

u; = uigdr, (3.3)

19
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Table 3.1. Orthogonal Set of Base Vectors e

| node £ Ul C Xy Ay Ay Ay T4y Ty Tap Ty
1 -5 -5 -5 1 -1 -1 -1 1 1 1 =1
2 5 -5 -5 1 1 -1 -1 1 -1 -1 1
3 5 5 -5 1 1 1 -1 -1 =1 1 -1 ‘
4 -5 5 -5 1 —i 1 —~1 -1 1 -1 1
5 -5 -5 5 1 -1 -1 1 -1 -1 1 1
6 5 -5 5 1 1 -1 1 -1 1 =1 -1
7 5 5 5 1 1 1 1 1 1 1 1
§ -5 5 5 1 -1 1 1 1 -1 -1 -1

and likewise for the acceleration field
U = updr . (3.4)

| The velocity gradient tensor, L, is defined in terms of nodal velocities as

L,‘j = i’i.j = ‘fl,’[d)]‘j . (35) ':
By convention, a comma preceding a lowercase subscript denotes differentiation with
respect to the spatial coordinates (e.g., ;; denotes g;fl).
' J

The 3-D isoparaiuetric shape functions map the unit cube in ¢;-space (€; is written
explicitly as (£,7,()) to a general hexahedron in z;-space, as shown in Figure 3.1. We
choose to center the unit square at the origin in {; space so that the shape functions

may be conveniently expanded in terms of an orthogonal set of base vectors, given in
Table 3.1, as follows:

1 1 1 1 1 1 1 1
¢r = girt A PRATI 76Aar + 5’70‘:.’ + 5(5F21 + ifﬂrzl + 561741‘4: (3.6)

The above vectors represent the displacement modes of a unit cube. The first vector,
X1, accounts for rigid body translation. We call £ the summation vector since it may
be employed in indicial notation to represent the algebraic sum of a vector.

The linear base vectors A;; may be readily combined to define three uniform normal
strains and three rigid body rotation modes for the unit cube. We refer to A;; as the
volumetric base vectors since, as we will illustrate below, they are the only base vectors
which appear in the element volume expression.

20
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The last four vectors, I'ar, (Greek subscripts have a range of four) give rise to linear
strain modes which are neglected in the uniform strain integration. These vectors define
the hourglass patterns for a unit cube. Hence, we refer to I'y; as the hourglass base
vectors. The displacement modes represented by the vectorsin Table 3.1 are also shown
in Figure 3.1.

In the finite element method, we replace the momentum balance (Equation 2.17)
with a weak form of the equation. Using the principle of virtual work, we write the
weak form of the equation as

Z/ (Ti;; + pbi — piii)buidV = 0 (3.7)
€ V( .

where §u; represents an arbitrary virtual displacement field, with the same interpolation
as Equation 3.2, which satisfies the kinematic constraints. Integrating by parts and
applying Gauss’ divergence theorem to Equation 3.7 then gives

1

Z [/ Tijnjéu,-dA_/ T,'j5u;'jdv+/ pb,-éu,-dV—/ pil,-éu;dVJ =0 . (38)
e Se Ve Ve Ve

The summation symbol represents the assembly of element force vectors into a global
nodal force array. We assume that the reader understands the details of this assembly;
we will not discuss it further in this document.

The second integral in the preceding equation is used to define the element internal
force vector f;; as

511,'1 il 2/ T,-j&u,-,jdV . (39)
Ve

The first and third integrals define the external force vector, and the fourth integral
defines the inertial response.

We perform one-point integration by neglecting the nonlinear portion of the ele-
ment displacement field, thereby considering a state of uniform strain and stress. The
preceding expression is approximated by

fir = T,-J-/ ¢1,;dV | (3.10)
Ve

where we have eliminated the arbitrary virtual displacements, and T;J- represents the
assumed uniform stress field which will be referred to as the mean stress tensor. By
neglecting the nonlinear displacements, we have assumed that the mean stresses depend
only on the mean strains. Mean kinematic quantities are defined by integrating over

the element as foilows: !

7 ), 4 ;dV . (3.11)

Ui =
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We now define the discrete gradient operator as
B = ¢r:dV . (3.12)
Ve
The mean velocity gradient, applying Equation 3.5, is given by

1
‘/}

Combining Equations 3.10 and 3.12, we may express the nodal forces by

Wi By (3.13)

Ui g =

foo = Ti;Byr (3.14)

Computing nodal forces with this integration scheme requires evaluation of the
gradient operator and the element area. These two tasks are linked since

zig =6y | (3.15)

where 6;; is the Kroneker delta. Equations 3.1, 3.12, and 3.15 yield

.T,']b)j] = / (.”l',’/(f)]) (” (g,', . . (316)
Jv,
Consequently, the gradient operator may be expressed by
oV
B = — . (3.17)
dxis

To integrate the element area in closed form, we use the Jacobian of the isopara-

metric transformation to transform to an integral over the unit cube:

v —/(11 / / / Jdcdnde . (3.18)
5 3 5

The Jacobian is given in terms of the alternator e;;; as

Oz Oy 8=

u"‘

Therefore, Equation 3.18 can be written as

V= z1y5:kCrixk (3.20)
where .
? O¢1 0y 00k .
= = d(d . .
Cuk = Cuk/;— /% »/:‘; 8¢ 9n; 9Ck d¢dnd{ | (3.21)
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Observe that the coefhicient array £';;x is identical for ali hexahedrons. Furthes-
more, 1t possesscs the alternator properties as given below:

Crr = Cyr1 = Cgry = ~Ciry = =Cyix = ~Cry; (3.22)

Therefore, applying Equations 3.17 and 3.22 to 3.20 yields the following form for eval-
uating the B-matrix:
[ yozk
Bi; = [ x| Crow . (3.23)

TIYK

In light of Equation 3.6, it is evident that evaluating each component of Cjyx
invnlves integrating a polynomial which is at most bi-quadratic. However. since we are
integrating over a symmetric region, any term with a linear dependence will vanish.
The only terms which survive the integration will be the constant, square. double
square and triple square terms. Furthermore, the alternator properties cause half of
these remaining terms to drop out. The resulting expression for C x is

1 .
Cor = 157 Sk BAgA Ak + Al Ui + T o Tin + Tl Aen) (3.24)

The above expression is evaluated using Table 3.1, after which practical formula
for computing ihe B-matrix and volume are developed. Since (";;x has the alternator
propertics given in Equation 3.22, only 56 (the combination of eight-nodes taken three
at a time) distinct nonzero terins are possible. However, the voluiie must be inde-
pendent of the selection of node 1, which implies that (';;, is invariant if the nodes
are permuted according to Table 3.2. Consequently, only 21 (the combination of seven
nodes taken two at a time) terms may be independent. Furthermore, once node 1 1s
selected, three orientations of the node numbering systen: are possible, as given by the
permutation Table 3.3. Therefore, only seven terms of (';;x need be evaluated.

Seven independent terms of 'y are listed in Table 3.4. These terms may be
evalvated via Equation 3.24 and Table 3.1. Only three of these seven terms do not
vanish, as indicated in Table 3.4. All other nonzero terms of C;;x are found by
permuting the nodes according to Table 3.2 and using the alternator properties of
Equation 3.22. Alternatively, the nonzero terms may be gencrated by applying an-
tisymmetry, Cryx = —Crry, to Table 3.4, then permuting according to Tables 3.3
and 3.2, successively. The latter scheme straightforwardly results ir formula for com-
puting the B-matrix.

The first term of By is expressed as

1
B = Slual(ze = z3) = (50 = 25)) +ys(2 = )
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+ya((23 = z8) = (25 = 22)) + ys((28 — 26) — (22 — 24))

+ys(zs — 22) + ya(z4 — 25)] (3.25)
Other terms of By are evaluated using the same formula after permuting the nodes
according to Table 3.2 and, subsequently, permuting the coordinate axes according to

Table 3.5. The element volume is most easily computed by contracting the B-matrix
and nodal coordinates as per Equation 3.16.

Table 3.2. Nodal Permutations

-

1 2 3 4 5 6 7 8
23 41 6 7 8 3
3 4 1 2 7 8 5 6
41 2 3 8 5 6 7
5 8 7 6 1 4 3 2
6 5 8 7 2 1 4 3
76 5 8 3 2 1 4
8 7 6 5 4 3 2 1

Table 3.3. Three Possible Orientations of Node Numbering

1 23 4 5 6 7 8
1 4 8 5 2 3 7 6
1 5 6 2 4 8 7 3

3.1.1 Lumped Mass Matrix

In order to reap the benefits of an explicit architecture, we must diagonalize the
mass matrix. We do this by integrating the inertial energy variation as follows:

/ pu;0w;dV = diymyyéuig (3.26)
V.

where

mry = pV&j_] (327)
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Table 3.4. Nonzero Terms Generated by Applying Asymmetry S

I J K Cux
1 2 3 -5
1 2 5 45
1 2 6 45
12 7 0
1 2 8 0
1 3 5 0
1 3 6 0

Table 3.5. Coordinate Axes Permutations

1 2 3

2 3 1
31 2] .
{
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and §;, is the Kroneker delta. Clearly the assembly process for the global mass matrix
from the individual element matrices results in a global mass matrix which is diagonal
and can be expressed as a vector, A, .

3.2 Explicit Time Integration

PRONTO uses a modified central difference scheme to integrate the equations
of motion through time. By this we mean that the velocities are integrated with a
forward difference, while the displacements are integrated with a backward difference.

The integration scheme for a node is expressed as:

i, = (557 —£/"T)/M (3.28)
Upar = U + Aty (3.29)
Wpar = U + Otuggay (3.30)

where £557 and {7 are the external and internal nodal forces. respectively, M is the
nodal point lumped mass, and At is the time increment.

The central difference operator is conditionally stable. It can be shown that the
Courant stability limit for the operator with no damping is given in terms of the highest

cigenvalue in the system 11):
9

At £

(3.31)

‘-‘)mar

In Section 3.5, we discuss how the highest eigenvalue is approximated and how we
determine a stable time increment.

3.3 Finite Rotation Algorithm

We stated in Section 2.2 that one of our fundamental numerical challenges in the
development of an accurate algorithm for finite rotations was the determination of R,
the rotation tensor defined by the polar decomposition of the deformation gradient F.
We developed an incremental algorithm for reasons of computational efficiency and
numerical accuracy. The validity of the unrotated relirence frame is based on the
orthogonal transformation given by Equation 2.14. Therefore the crux of integrating
Equation 2.6 for R is to maintain the orthogonality of R. 1f one integrates R = QIR via
a forward difference scheme, the orthogonality of R degenerates rapidly no matter how
fine the time increments. We instead adapted the algorithm of Hughes and Winget (12]
for integrating incremental rotations as follows.
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A rigid body rotation over a time increment Af may be represented by

Xesar = QarX (3.32)

where Q. is a proper orthogonal tensor with the same rate of rotation as R given
by Equation 2.6. The total rotation R is updated via the highly accurate expression
below.

R1+Ar = QA:Rr (3-33)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates
are related by

] 1
:&7(Xl+m - %) = §Q(Xr+m + X)) - (3.34)

Combining Equations 3.32 and 3.34 yields
At
(Qar = Ijx, = ‘T)“Q(Q.M +I)x, . (3.35)

Since x, is arbitrary in Equation 3.35, it may be eliminated. We then solve for Qa,.
At N\ At

The accuracy of this integration scheme is dependent upon the accuracy of the

The result i«

midpoint relationship of Equation 3.34. The rate of rotation must not vary signifi-
catftly over the time increment. Furthermore. Hughes and Winget [12] showed that the
conditioning of Equation 3.36 degencrates as A{§) grows.

Our complete numerical algorithm for a single time step is shown in Table 3.6.

This algorithm requires that the tensors V and R be stored in memory for each

element.

3.4 Determination of Effective Moduli

Algorithms for calculating the stable time increment, hourglass control, bulk vis-
cosity, and nonreilecting boundaries require dilatational and shear moduli. In PRONTO
we use an algorithm for adaptively determining the effective dilatational and shear
moduli of the material.

Since PRONTO uses an explicit integration algorithm, the constitutive responce
over a time step can be recast a posteriori as a hypoelastic relationship. We approxi-
mate this relationship as isotropic. This defines effective moduli, X and /i in terms of
the hypoelastic stress increment and strain increment as follows:

,A’j"j = At(;\dkk5;j + 2[1,({,‘_,') (337)
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Table 3.6. Finite Rotation Algorithm

| 1. Calculate D and W
2. Compute z; = €k Vim Dmi
w=w=2{V-Itr(V)] 'z
Q; = %Cijkwk

3. Solve (I- 5'92) Resac = (I+ 502) R,
4. Calculate V =(D+ W)V -VQ

5. Update  Viiac= V,+ AtV

6. Compute d=RTDR

7. Integrate & =f(d,o)

8. Compute T = RoRT

Equation 3.37 can be rewritten in terms of volumetric and deviatoric parts as

Aok, = A(3) + 24)dis (3.38)
and
si; = At2jie;; (3.39)
where |
si; = Doy - gAO’kké{j (3.40)
and ) .
ei = dij — zdidi; - ‘ (3.41)

The effective bulk modulus follows directly from Equation 3.38 as

Z&Ukk

K =3)\+2i=
3 3A+ 21 Atde,

(3.42)

Taking the inner product of Equation 3.39 with the deviatoric strain rate and solving
for the effective shear modulus 2/ gives

SHCQ

20 = ———— . 3.43
H = Atemnemn (3.43)
Using the result of Equation 3.42 with Equation 3.43, we can calculate the effective
dilatational modulus A + 2j:

A+2i==(3K +2-(24) (3.44)

1
3
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Table 3.7. Special Cases for Effective Moduli

Atdie > 107%  At?eje;; > 10712 X + 24 21
Yes Yes Eq. 3.44 Eq. 3.43
Yes No do + 2o Eq. 3.45
No Yes Ao+ 20 Eq. 3.43
No No Ao+ 210 Ao+ 2p0

I{ the strain increments are insignificant, Equations 3.42 and 3.43 will not yield
numerically meaningful results. In this circumstance, PRONTO sets the dilatational
modulus to an initial estimate, Ag+2po. An initial estimate of the dilatational modulus
is, therefore, the only parameter which every constitutive model is required to provide
to the time step control algorithm.

In a case where the volumetric strain increment is significant, but the deviatoric
increment is not, the effective shear modulus can be estimated by rearranging Equa-

tion 3.44 as follows:

-

1

<

If neither strain increment is significant, PRONTO sets the effective shear modulus
equal to the initial dilatational modulus.

The algorithm that PRONTO uses to estimate the effective dilatational and shear
moduli is summarized in Table 3.7. Note that either of eflective moduli calculated via
this algorithm may be zero or negative. These degenerate cases must be taken into
account whenever these moduli are used.

3.5 Determination of the Stable Time Increment

Flanagan and Belytschko [13] provided eigenvalue estimates for the uniform strain
hexahedron described in Section 3.1. They showed that the maximum eigenvalue was

bounded by
8/\ + 2/1, B,‘[B,'] > w2 S §)\ + 2/1 Bi]Bil

(3.46)

Using the effective dilatational modulus from Section 3.4 with the eigenvalue estimates
of Equation 3.46 allows us to write the stability criteria of Equation 3.31 as

1 (poVo)V
2 (/\ + 2/1)B,’1B,‘1

At? < (3.47)
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The stable time inerement is determined from Equation 3.47 as the minimum over all

elements.
Lquation 3.17 iz numernically invalid if the effective dilatational modulus is less

AT
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than or (qudi to zero. A negative modulus indicates a strain <on(’mng situation (the
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allows strain softening). which renders the central llﬂcrcn((' operator unconditionally
unstable. In practice. however. strain softening is generally short lived. so that the
caleulations can continue in a stable manner once the softening energy has been dissi-
pated. To aid the user in controlling an unstable strain softening situation. we adjust
the effective dilatational modulus with the strain softening scale factor (Appendix A.

command 11 as follows:

/\() -//0

3480
(&\ﬁ) ( )

If A\ - 24 < 0 then - 2 =

To avoid dividing by zero in Equation 3.47. we then enforce the following condition:

N2 (N = 2p0) - 107° (3.49)

The estimate of the critical time increment given in the Eguation 3.17 15 for the
case where there 1s no damping in the svstem. H we define ¢ as the fraction of critical

damping in the highest element mode. the stability eritena of Eqguation 3.47 becomes

A OAT (\71 e [) . (3.50)

Conventional estimates of the eritical ime increment size have heen based on the
transit time of a dilatational wave over the shortest dimension of an element or zone.

For the undamped case this gives

Al < - (3.51)

where ¢ is the dilatational wave speed.

There are two fundamental and important differences between the tinme increment
limits given by Eqguations 3.47 and 3.51. First. our time increment limit is dependent
on a characteristic element dimension. which is based on the finite element gradient
operator and does not require an ad hoc guess of this dimension. This characteristic

clement dimension, [, is defined by inspection of Equation 3.17 as
1 V (3.52)
= Tt B I 4

2 VBB

Second. the sound speed used in the estimate is based on the current response of the
material and not on the original elastic sound speed. For materials which experience a
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reduction in stifflness due to plastic flow. this can result in significant increases in the
critical time mcrement.

[t should be noted that the stability analysis performed at each time step predicts
the critical time increment for the next step. Our assumption is that the conservative-
ness of this estimate compensates for any reduction in the stable time increment over

a single time step.

3.8 Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only
a fully linear velocity field. The remaining portion of the nodal velocity field 1s the
so-called hourglass field.  Excitation of these modes may lead to severe. unresisted
mesh distortion. The hourglass control algorithm desceribed here is taken directly from
Flanagan and Belvtschko 10, The method isolates the hourglass modes so that they

may be treated independently of the rigid body and uniform strain medes.

A fully Binear velocity field for the hexahedron can be described by

MR w, - 1./,._,(<1'J SR (3.53)

!
The mean coordinates », correspond to the center of the element and are defined as

]
Iy “\,-",1:1 : (3.51)

The mean translational velocity 1= similarly defined by

ha o . W g e
t, == = U;1.o . 3.5
1 (\) II ] ( )

The linear portion of the nodal veloeity field may he expressed by specializing Equa-
tion 3,53 to the nodes as {ollows:

. N e - - s - —~ a
“,.!1 = ‘Il,L] BRI KUY M .I‘JLI) (350)

where Y7 is used to maintain consistent index notation and indicates that u; and &;
are independent of position within the element. From Equations 3.16 and 3.56. and
the orthogonality of the base vectors, it follows that
. - . Ny oy L -
TR u,»L,l Y = Su; (3.57)

and

B = 1‘/!‘,1‘\.3,;1 = Vi, . | (3.58)
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The hourglass field #1¢ may now be defined by removing the linear portion of the
nodal velocity field:
“HG _ LIN .
U o= Uy - . (3.59)
Equations 3.57 through 3.59 prove that I and Bj; are orthogonal to the hourglass
ficld:
il " =0 (3.60)

WhB; =0 (3.61)

Furthermore. it can be shown that the B matrix is a linear combination of the volu-

metric base vectors. ;. so Equation 3.61 can be written as
afCN; =0 . (3.62)

Fquations 3.60 and 3.62 show that the hourglass field is orthogonal to all the base

HG
1

vectorsin Table 3.1 except the hourglass base vectors. Therefore. 1% may be expanded

as o lincar combination of the hourglass base vectors as follows:
w1 P 163
i,y - "";:"q:n al . (. Rl )
\
The hourglass nodal velocities are represented by ¢, above (the leading constant is
added to normalize 1..7). We now define the hourglass shape vector 7 such that

: I .
g, = Tzl Sal . (3(\4)
\

s

By substituiing Equations 3.56. 3.59. and 3.61 into 3.63. then multiplying by Iy and

using the orthogonality of the base vectors. we obtain the following:
uVar = wigrilar = Uival (3.65)

With the definition of the mean velocity gradient. Equation 3.13. we can eliminate the

nodal velocities above. As a result. we can compute 47 from the following expression:

'

] .
TInl = r(ll - "——-Bil'ri.lru.f (366)

The difference between the hourglass base vectors I'.; and the hourglass shape
vectors a7 is very important. They are identical if and only if the hexahedron is
a right-parallelepiped.  For a general shape, Loy 1s orthogonal to Bj; while 747 1s
orthogonal to the lincar velocity field a5/, While T'q; defines the hourglass pattern,

a7 is necessary to accurately detect hourglassing.
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For the purpose of controlling the hourglass modes. we define generalized forces
Q... which are conjugate to ¢, so that the rate of work is

. 1 . -
U;lf,'};vc = ;Qioq,'u (3.67)

for arbitrary w,;. Using Equation 3.64, it follows that the contribution of the hourglass

resistance to the nodal forcesis given by

]
iII{G - ;Q;o‘uo ) (3.68)

Two tyvpes of hourglass resistance are possible: artificial stiffness and artificial
A g p
damping. In PRONTO 3D we use only the stiffness resistance. In terms of the tuneable

stiffness w. the resistance is given by
Q, = =2 ~—-jl——~(},,, (3.69)

Note that the stiffness expression must be integrated. which further requires that this

resistance be stored in a global array.

Observe that the nodal antihourglass forces of Equation 3.68 have the shape of
~a; tather than L. This fact is essential since the antihourglass forces should be
orthogonal to the linear velocity field. so that no energy is transferred to or from the

rigid hody and uniform strain modes by the antihourglassing scheme.

3.7 Artificial Bulk Viscosity

Artificial viscosity is applied to the numerical solution for two reasons. First is to
prevent high velocity gradients from collapsing an element before it has a chance to

respond. ‘The sccond reason is to quiet truncation frequency “ringing”.

Ideally, one v-ould like to add viscosity only to the highest mode of the element, but
isolating this mode is impractical. The standard technique is to simply add viscosity
to the volumetric or “bulk™ response. This generates a viscous pressure in terms of the
volume strain rate as follows:

2

= b,p(‘l-‘j - p bgl"‘; (3.70)

where b; and b; are coeflicients for the lincar and quadratic terms, respectively. The
quadratic term in Equation 3.70 is more important and is designed to “smear” a shock
front across several elements. This term yields a jump in energy as a smeared shock
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passes, which simulates the shock heating. As a result, the smeared shock front can be
propagated as a steady wave.

The linear term is intended to dissipate truncation frequency oscillations. The
quadratic term is only applied to compressive strain rates since an element cannot

collapse in expansion.

The preceding expression is simplified if we use the undamped stable time incre-
ment defined by Equation 3.47 and write

/ .
Af=c=] L
\' QB,'IB,'I A+ 2/1

—~

(3.71)

[

or

Af /, m V
\ A= 2/1 QB,‘[B,'I

i

(3.72)

where m is the element mass. We now define the factor ¢ such that the quadratic

viscosity term vanishes in expansion
a9 - . oy -
e = by — b3t min(0, Dyt ) . (3.73)

This quantity is required for the damped stability criteria of Equation 3.50. Note that
the condition imposed by Equation 3.49 prevents Equation 3.73 from vielding so large

a value of ¢ that Equation 3.50 would numerically vield a zero value.

We will show below that ¢ can be used to estimate the fraction of critical damping
in the highest element mode. Using Equation 3.73 in Equation 3.72 allows us to write

the viscous pressure as
g = (by = EALD )N + 20) A Dy (3.74)

The bulk viscosity pressure is appended to the stresses during the internal force calcu-

lations to yield the following forces.
fir =qBir . (3.75)
The above expression can be expanded using Equations 3.72 and 3.73 to yield
1 : -
fiI = CPCIX—;BJ'_]B,'['IIJ‘_] . : (3(6)

This form indicates that if B is an eigenvector, the modal damping is

cV

-7
-
~—
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The critical damping estimate of the maximum element {frequency is
2nw=2—-—=p— . (3.78)

The two expressions above show that ¢ is half the fraction of critical damping in the
highest mode.

3.8 Adaptive Element Deletion

The adaptive element deletion option was added to PRONTO 3D to provide the
capability to model catastrophic material failure. This option should not be confused
with the element block deletion option (Appendix A, command 32) which can be used
to remove an entire block of material from the analysis at some predetermined time.
The keyword here is “adaptive”. PRONTO allows the user to specify criteria which
define when the material fails within an element. This criteria is defined at the element
level and PRONTO checks every time step to determine whether material failure has

occurred.

Currently, the user can define failure in terms of energy per unit volume, vonMises
stress, pressure, or maximum principal stress. Also, failure criteria can be defined in
terms of any internal state variable. Note that the pressure is positive in compression,
p = - tr{a). The adaptive clement death capability requires a very mature user who
understands how the material behaves. The capability built into the code is quite
general, and it is possible for the user to define a nonsensical failure criteria. PRONTO
allows the user to specify the failure in terms of a particular variable, a prescribed value
of the variable at failure, and what we refer to as the mode of failure. By mode we

mean minimum, maximum, or absolute value.

The adaptive element deletion capability is completely vectorized and does not add
any appreciable computational penalty. We define a status array (length=NUMEL)
which has a value of one or zero. If an element is “alive”, the status array contains a
value of one for that element. When PRONTO detects that the element has “died”,
the value of the status array for that clement is reduced to zero over five time steps.
PRONTO uses the status array to wipe out any contribution that a deleted element
makes in step 1 of Section 8.2. Each deleted element undergoes all the calculations
which it would if it were not deleted, but its contributions are not included in the
time step control algorithm nor the stress divergence. This is accomplished by a few
multiplications of critical results by the status array. If the element is not deleted, the
results are multiplied by a one and the results are unchanged. If the element is deleted,
the results are multiplied by a zero and the results are neutralized. Hence, the overall
cost of this algorithm is a few multinlications per element.
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When the element is deleted, its contribution to the nodal point lumped mass is
still retained. When all the elements connected to a particular node are deleted, the
node then becomes a free nodal mass, whose motion PRONTO continues to calculate.

It is more convenient for post-processing to define the status array exactly opposite
to our convention. For this reason, each value is flipped as the status array is written
to the post-processing data base. Note that if the adaptive element deletion and/or

the element block deletion options are used, the element status array is automatically
written to the data base.




4. CONSTITUTIVE MODELS

One of the primary reasons for developing PRONTO was to have a numerical
testbed for developing constitutive models. As a result, considerable effort was directed
to write a flexible material interface subroutine which allows a constitutive model to
be added to the code with minimal effort. The MATINT subroutine in PRONTO
allows a constitutive modeler to add a new material model to the program by filling
in a handful of numbers in data statements which tell the program how to set up the
internal data base for the new model. Consequently, the constitutive modeler does not
have to understand the inner workings of PRONTO and does not have to write any
format statements or juggle the memory allocation in the code. The comments in the
FORTRAN explain in great detail how to add the new model. See Appendix C for the

steps to be taken to add a new constitutive model.

Currently there are seven material models in the code. Since models can be
added with such ecasc. this number is expected to increasc as applications requiring

new materials arise.

All material models are written in terms of the unrotated Cauchy stress, ¢, and

the deformation rate in the unrotated configuration, d.

For each of the materials described below, we give a list of the internal state
variables used in that particular material model. We also give a list of the matenal
constants which are stored in the PROP array (Appendix B, Section 5.0). In the list
of material properties, the items marked with an “*” are material properties which
are calculated internally. The remaining material properties are the actual values read

from the input data.

The relationship between the material models described in this chapter and the
equations of state described in Chapter 5 must be undersiood in order to properly use
the cquations of state. We have structured PRONTO so that material models can act
as a host to an equation of state. Not all of the constitutive models described in this
chapter do so. The equations of state cannot be used except in conjunction with a
material model. The equation of state can only calculate the volumetric material re-
sponse. The hydrodynamic inaterial model (Section 4.7) has only volumetric response
and just calls the specified equation of state. The elastic plastic hydrodynamic mate-
rial model (Section 4.9) uses classical J; plasticity theory to determine the deviatoric
material response and calls the specified equation of state for the volumetric material
response. The other constitutive models in this chapter could be restructured to use
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Table 4.1, Sign convention used for pressure in each material model

- Model Tension  Compression
+ Flastic positive  negative
Elastic-Plastic positive  negative
Viscoplastic positive  negative
Damage positive  negative
Soils and Crushable Foams negative. positive
Low Density Foams positive  negative
Hyvdrodynamic negative positive

Elastic-Plastic

Hydrodynamic negative  positive

an equation of state for the volumetric material response if reqnired.

We have followed the historical convention used for each material model for the sign
of a positive pressure. We inherited most of these constitutive models from previous
codes and did not wish to change what has come to be accepted conventions for a
positive pressure. This means that for some models the pressure is positive in tension
and for others it is positive in compression. Table 4.1 shows the convention used for

each of the material models described in this chapter.

4.1 Elastic Material, Hooke’s Law
A linear elastic material is defined using Hooke's Law. In a rate form. this is

written as

o= Mtrd)é - 2ud (4.1)

where A and y are the elastic Lame material constants.,

This model has no internal state variables.

The PROP array for this material contains the following entries:

PROP(1) - Young's Modulus, £
PROP(2) - Poisson’s Ratio, v

* PROP(3) - A

* PROP4) - 2pu




4.2 Elastic-Plastic Material with Combined Hardening

The clastic-plastic model is based on a standard vonMises type vield condition
and uses combined kinematic and isotropic hardening. This model is widely used in
many finite element and finite difference computer programs and the many details of
its derivation are scattered throughout the literature. Here, we present the model in
detail because we feel that many users of the model are not familiar with its underlying
assumptions and numerical approximations.

4.2.1 Basic Definitions and Assumptions

Some definitions and assumptions are outlined here. Referring to Figure 4.1, which
shows the vield surface in deviatoric stress space. we define the backstress (the center
of the vield surface) by the tensor. a. If ¢ 1s the current value of the stress, we define
the deviatoric part of the current stress by

S=o-3troé (4.2)

We define the stress difference measured by subtracting the backstress from the devi-
atoric stress by

£=8—-a (4.3)

The magnitude of the deviatoric stress difference, R is defined by

Rz g EE (4.4)

where we denote the inner product of second order tensors by §:§ = §;;5;;. Note
that if the backstressis zero (isotropic hardening case) the stress difference is equal to
the deviatoric part of the current stress, S.

The vonMises yield surface is defined as

flo) = 36 : &=+’ (4.5)
The vonMises eflfective stress, 4. is defined by
e
&= \/gf €. (4.6)

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows

R=V2 = \/25' (4.7)
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Figure 4.1.

Yield Surface in Deviatoric Stress Space




The normal to the vield surface can be determined from Equation 4.5

=L (4.8)

We assume that the strain rate can be decomposed into elastic and plastic parts
by an additive decomposition

d =d 4 d” (4.9)
and assume that the plastic part of the strain rate is given by a normality condition
d” = 4Q. (4.10)

where the scalar multiplier, 4, is to be determined.

A scalar mcasure of equivalent plastic strain rate is defined by

&’ = \/gdpi : dr! (4.11)

which i1s chosen such that

gd" = ¢ d”. (4.12)

The stress rate is assumed to be purely due to the elastic part of the strain ratc

and is expressed in terms of Hooke's law by
&= Mtrd)é + 2d” (4.13)
where A and jo are the Lame constants for the material.

Below. we develop the theory for the cases of isotropic hardening, kinematic hard-
ening and combined hardening separately so that the reader can see the details of each

casc.

4.2.2 Isotropic Hardening

In the isotropic hardening case, the backstress is zero and the stress difference is
cqual to the deviatoric stress, S. We write a consistency condition by taking the rate

of Fiquation 4.5

flo) = 2k, (4.14)

By “consistency™ we mean that the state of stress must remain on the yield surface
at all times. We use the chain rule and the definition of the normal to the yield surface
given by Equation 4.8 to obtain

0

flo) = a“cfﬁ“H%HQ“" (4.15)
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and from Eqguations 4.4 and 4.5

L Of!
O s -p (4.16)
Lo ‘
Combining Equations 4,14, 4.15. and 4.16
1 . : -
~Sio=1H . (4.17)
h

We note that because S is deviatoric. S0 = S : S and

TP (i(ﬁ) . $.18)
S:S = — (18:8) = — | — | = ;60. :
dt - ) di \ 3 3 (

Then Equation 4.17 can be written as
L C Ve VA (4.19)

where H' is the slope of the effective stress versus equivalent plastic strain (& versus

). This is derivable from the data front a uniaxial tension test as shown in Figure 4.2
The consisteney condition. Fquation 4.17 and Equation .14, result in
VB Qie (1.20)
We define the trial elastic stress rate 67 by
o' 2 Cid (-1.21)
where C s the fourth-order tensor of elastic coefficients defined by Equation .13,
Combining the strain rate decomposition defined in Equation 4.9 with Equations 4.20

and .21 vields

\/511'(2:’1 =Q:6"-Q:C:d" (4.22)

We note ihat because Q is deviatoric, C: Q = 2;Q and Q : C: Q = 2. Then
using the normality condition, Equation 4.10, the definition of equitalent plastic strain,

Fquation 4.11. and Equation 4.22
2H'y=Q: o' — 2 (4.23)

and since Q is deviatoric (Q : ¢ = 2;/Q : d) we can determine 7 from Equation 4.23
as

]
N=—Q:d. (4.24)
(1+ f;’;)
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The current normal to the yield surface, Q, and the total strain rate, d, are
known quantities. Hence, from Equation 4.24. 4 can be determined which can be
used in Fquation 4.10 to determine the plastic part of the strain rate which, with the
additive strain rate decomposition and the elastic stress rate of Equations 4.9 and 4.13,

completes the definition of the rate equations.

We still must explain how to integrate the rate equations subject to the constraint
that the stress must remain on the vield surface. We will show how that is accomplished
in Section 4.2.5.

4.2.3 Kinematic Hardening

Just as before with the isotropic hardening case, we write a vonMises yield condi-

tion but now in terms of the stress difference

f1&6) =36 &=r% (4.25)

It is important to remember that a and € are deviatoric tensors. The consistency

condition ix written for kinematic hardening as

f18) =0 (4.26)
because the sizd of the vield surface does not grow with kinematic hardening, therefore.
r = 0. Using the chain rule on Equation .20

(?f . -

(;}:5 € =0 (4.27)
and , o

((;ff _ ‘(_))g Q=RkQ . (4.28)

Combining Fquations 1.27 and 4.28 and assuming that 1 # 0

Q:f=0 (4.29)

or
Q:(S~a)=0 . (4.30)
A geometric interpretation of Equation 4.30 1s shown in Figure 4.3 where it can be seen

that the backstress moves in a direction parallel to the normal 1o the yvield surface.

We must now decide how & is defined. Recall that for the isotropic hardening
case, Equation 4.20

Q:6= \/gb"d'f*’ =21 . (4.31)
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Figure 1.3.  Geometric Interpretation of the Consistency Condition for Kinematic

Hardening
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The kinematic hardening condition assumes that
& = od” = 07Q (4.32)

where ¢ is a material parameter. Equation 4.32 combined with Equation 4.30 gives a
result identical to the isotropic hardening case. Equation 4.31.if ¢ is chosen to be 211",
Hence, either Equation 4.31 or 4.32 gives us a scalar condition on a. Note that both
of these are assumptions and must be shown to be reasonable. Of course. experience
with material models based on these assumptions has proven them to be reasonable

representations of material behavior.

Using Equation 4.31. the strain rate decomposition. Equation 1.9. and the clas-
tic strain rate, Equation 4.13. in the consistency condition for kinematic hardening.
Equation 4.30 gives

2H'Q=06" - C:d". (4.33)

Taking the tensor inner product of both sides of Equation 4.33 with Q gives
Q::l'vQ=Q: (6" - 27Q) (4.34)
Again. because Q is deviatoric: €C:Q =2pQ and Q : C: Q = 21,

Solving Fquation .31 for 5 gives

]
a Q:d (4.39)

: I
(1= 3-)

which s the same result as was obtained for the isotropic hardening case.

4.2.4 Combined Isotropic and Kinematic Hardening

For the combined hardeniug case we define a scalar parameter, 8. which determines
the amount of cach type of hardening. We require that

0<3<1. (4.36)

Figure 4.4 illustrates the uniaxial response which will be computed for & for dif-
ferent choices of 3. When 3 = 0 we have only kinematic hardening and when 3 = 1

we have only isotropic hardening.

We use the results derived before for the independent hardening cases and multiply
by the appropriate {raction for each type of hardening.. Equations 4.19 and 4.32 are
rewritten as

i = \/gy'éﬂ’ﬁ (4.37)
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and

& =21'd"(1-B)=L1H'yQ(l - B). (4.38)
As before. we write a consistency condition
Q:f=R (4.39)
or
Q:($-4)=\/1H'PB. (4.40)

Using the elastic stress rate and the additive strain rate decomposition with Equa-
tion 4.40 and taking the tensor product with the normal, Q

[

Q:6"-9Q:C:Q-Q: 2H3(1-9)]:Q=Q: [[H\fm} :Q . (441)

Solving for 5

/

1

which is the same result as we obtained for each of the independent cases.

We summarize the governing equations for the combined theory:

¢=C:(d-d”)=4" (4.43)
R:ﬂ\/gH"?”'=ﬂ§f1'v (4.44)
¢ = (1-p8)5H'd" (4.45)
0, clastic; if f(£) < &2

pl ? J

d - { WQ‘ plastvi(‘: lf f(f) _>_' H2 ("1-46)
1
7= ——7=Q:d (447)
(1+45)

¢
Q:.:i__c(‘—:—-:—, (448)

!%’ix R

4.2.5 Numerical Implementation

Our finite element algorithm requires an incremental form of Equations 4.43-4.48.
Additionally, we must have an algorithm which integrates the incremental equations
subject to the constraint that the stress remains on the yield surface.
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The incremental analogs of Equations 4.43 through 4.45 are

Tnt1 = Opyy — Ay2uQ (4.49)
Rny1 = Ro+ 2BH' Ay (4.50)

and
anyy = ap + (1= B)JH'AYQ (4.51)

where A~ represents the product of the time increment and the equivalent plastic strain
rate (Ay = Aty). The subscripts n and n + 1 refer to the beginning and end of a time
step, respectively.

We also need an incremental analog to the rate forms of the consistency condition
given by Equations 4.14, 4.26, and 4.40. At the end of the time step, we insist that the
stress state must be on the yield surface. Hence, the incremental consistency condition
1s

QApyy + R11+1Q = SrH-]' (452)

Equation 4.52 is shown graphically in Figure 4.5.

Substituting the definitions given by Equations 4.49 through 4.51 into the consis-

teney condition of Equation 4.52
a, - (1= F)EH'AQ) + [R, = 23H'A3]Q = (S, = A32,Q] . (4.53)
Taking the tensor product of hoth sides of Equation 4.53 with Q and solving for A«
! ] :
Ay o= (T - R 4.54)
2/,(1_% _[1_) Hf +4 ] ) (

K17
It follows from Equation 1,54 that the plastic strain increment is proportional to the
maanitude of the excursion of the elastic trial stress past the yield surface (see Fig-

ure 4.6).

Using the result of Equation 4.54 in Equations 4.49 through 4.51 completes the

aigorithm. In addition. we can compute
AdM = AYQ (4.55)

and

8l = \[1ay. (4.56)

The results of Equation 4.54 applied to Equation 4.49 show that the final stress
is calculated by returning the clastic trial stress radially to the final yield surface at
the end of the time step. (Hence the derivation of the name Radial Return Method.)
Estimates of the accuracy of this method and other mathods for similarly integrating
the rate equations are available in Krieg and Krieg [14] and Schreyer, et al. [15]. Note
that the last term in Equation 4.49 (the radial return correction) is purely deviatoric.
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Condition for Combined Hardening

51




N

TR
l n+ 1|"Rn

TR
n+1

Figure 4.6. Geometric Interpretation of the Radial Return Correction




——

The elastic-plastic material model uses eight internal state variables:

EQPS - equivalent plastic strain

RADIUS - current radius of yield surface

ALPHA1l - xx component of backstress in unrotated configuration
ALPHA22 - vy component of backstress in unrotated configuration
ALPHA33 - zz component of backstress in unrotated configuration
ALPHA12 - xy component of backstress in unrotated configuration
ALPHA23 - vz component of backstress in unrotated configuration
ALPHA31 - zx component of backstress in unrotated configuration

The PROP array for this material contains the following entries:

PROP(1) Young’s Modulus, F

PROP(2) Poisson’s Ratio, v

PROP(3) Yield Stress, o4

PROP(4) Hardening Modulus, E'

PROP(5) - 3 \
* PROP(6) -  2u
* PROP(T) 3
* PROP(8) 1/(2u(1 + H'/3) (Note:H' = H/(1 — H/E)
* PROP(9) - A
* PROP(10) - _3]1’”3
* PROP(11)- 2(1 - A)H'/3

4.3 Viscoplastic Material Model

The viscoplastic material model presented here represents a simple rate dependent
plasticity model. The model is intended for relatively low strain rate (||/d|| < 200) and
is not recommended for high rates of impact. More details of the model can be found
in Taylor and Becker [16] and Perzyna [17]. The model assumes an additive strain rate
decomposition identical to the elastic-plastic model

d =d” +d”. | (4.57)

The stress rate is assumed to be given by the elastic part of the strain rate using
Hooke’s law

=C:d%=C:(d-d") (4.58)

which can be written more clearly in index notation as

Gi; = Mg 6i; + 2pds). (4.59)
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We define the vonMises equivalent stress by

5=4/38:5 = /188, (4.60)

where S is the deviatoric part of 7.

For this isothermal model, we use isotropic hardening only. Hence, we can write
the yield stress as
oo = oo(&) (4.61)

where &' is the equivalent plastic strain. In this model, we assume isotropic hardening
with a Hardening Modulus, E’. This is defined by identifying an equivalent plastic
strain rate by

e = o d” (4.62)

t
zp’:/ y/2det:dPldt . (4.63)
0

We define the vield function as

and

flo,o0) = & — ao(d”) . (4.64)
The plastic strain rate is assumed to be given by a stress potential as

dr = 99(0) (4.65)
0o

and we assume an associated flow rule which implies that

gle) = g(f) = 9(3,00) - (4.66)

Then Equation 4.65 can be written as

dg d0a
d” = = — 4.67
05 0o (4.67)
We usc a power Jaw for gg
P
b9 _ 7 (% - ) 72 (4.68)
80 O g < (o)

where 7 and p are material parameters.

Equation 4.68 indicates that the plastic strain rate is proportional to the overstress
above the current value of the yield stress. Hence, the higher the overstress, the greater
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the plastic strain, which leads to a reduction in the stress rate given by Equation 4.58
and an increase in strain hardening given by Equation 4.61.

Consider a uniaxial tension test. The solid curve shown in Figure 4.7 shows the
locus of apparent yield strengths &, for mild steel at different strain rates. The apparent
yield strength is the measured yield strength for a specimen from a tension test at a
given strain rate. At diflerent strain rates, different yield strengths are found. If the
elastic strain rate is assumed negligible, using Equation 4.67 and 4.68, the uniaxial

d=7<i—1>p. (4.69)

Og

strain rate is

Solving Equation 4.69 for the vonMises equivalent stress gives a relation for the

apparent yield stresz

&, = o 1+<-‘i>" . (4.70)
) 8

If the rate of deformation is very slow (e.g., d — 0), or the fluidity constant is very
large (e.g., v — oo ), then the yield stress given by Equation 4.70 is equal to the static
vield stress and the static yield condition of a rate-independent constitutive theory is
satisfied. If the motion 1s very rapid (e.g., d — o), or the fluidity constant is zero,
the response is elastic. since the value of yield stress is not restricted by Equation 4.70.
Values of effective vield stress as a function of strain rate for different choices of the

flow parameters. 3 and p. are shown in Figure 4.7.

1t follows that 29

= = 4.71

T @)
and 95 1

7
— =15 . 4.72
do & (4.72)
Using these definitions of the flow potential in Eqaation 4.65 yields

-

dr' = d"'~S . (4.73)

e

The numerical algorithm used in this model consists of a backward difference
integration of the rate equations. The algorithm proceeds as shown in Table 4.2.

The viscoplastic material model uses two internal state variables:

EQPS - equivalent plastic strain
SIGYLD - current value of yield stress
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Table 4.2.  Algorithm for Viscoplastic Material Model

t 1. Calculate the elastic trial stress

ol".. =0, + AtCd

n+1
. Calculate the equivalent trial stress

Gl = /3Slr Str
3. Check for yield

& — oo(d?') < 0 ; skip step 4

& — oo(d”!) > 0 ; continue below with step 4
4. Yield exceeded, calculate

ADP = 5 (22 1) a5t

Ao = C(Atd — AdP) = ¢'" — 2 Ad”
i P p

AdP = 5 (‘L— - 1)

4

o

0'71*1 = 0o, =+ AU
n+1 __ Jpl 7pl
0o " = ap(dh + Ady,,)

The PROP array for this material contains the following entries:

Young's Modulus, £

PROP(1)
PROP(2) Poisson’s Ratio, v
PROP(3) Yield Stress, 0,4
PROP(4) - Hardening Modulus, £’
PROP(3) - 1 ,
PROP(G) - »p
* PROP(7) 2
* PROP(8) A
* PROP(9) H =H/(1-H/E)

4.4 Damage Model

N The damage model in PRONTO simulates the dynamic fracture behavior of brittle

rock. 1t is based on work started by Kipp and Grady, [18] continued by Taylor, Chen

and Kuszmaul [19] [20] and recently modified by B. J. Thorne (first documented here).

The essential feature of this model is the treatment of the dynamic fracture process

in rock as a continuous accrual of damage in tension, where the damage mechanism is
N,
™
J
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attributed to microcracking in the rock medium. The fundamental assumption of the
damage model is that the material is permeated by an array of randomly distributed
microcracks which grow and interact with one another under tensile loading.

The compressive response of the material is assumed to be elastic-perfectly-plastic
and follows the theory of Section 4.2 with the hardening modulus, H’, set to zero. In
this section, we present the equations governing the tensile response of the material.

Following the work of Budiansky and O’Connell [21], we write the effective bulk
modulus of a cracked medium as

K 16 /11— 5?
Z=o1- Y 4.74
K 9(1-29)6‘* (4.74)

In Equation 4.74, the barred quantities represent degraded or effective quantities
in the fractured medium. We denote the undegraded bulk modulus and Poisson’s ratio
by I and 1. respectively. The crack density, Cy, represents the volume fraction of the
material occupied by flaws and is given by

_ B (v =7)(2 -7)
T 16 (1 = #2)[100 — (1 + 3v))

'

d

(4.75)

A Wiebull distribution is used to determine the number of flaws per unit volume, N,
active at a given mean volumetric strain,

N = ke,” (4.76)
where ¢, = :]‘ firdrll is the volumetric strain and & and m are material constants.

Theé nominal fragment size, a, is given by an expression derived by Grady [22]

2/3
1 ( V20K ¢ \

2\ pobmar )

a= (4.77)
where Ij¢ is the fracture toughness of the material, p is the material density, c = \/E/p
is the wave speed and ¢,q. 1s the maximum positive (tensile) mean volumetric strain
rate the material has ever experienced. The crack density is proportional to the number
of flaws per unit volume and the nominal fragment size,

Cy = BNG®, (4.78)

where 3 is a proportionality constant. Combining Equations 4.76 through 4.78 gives
an expression for the crack density in terms of the current mean volumetric strain and
the maximum previous mean volumetric strain rate, €maz,

. 2
Cy= 5’5< K1 ) em (4.79)

2 \ pCémaz
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where we have absorbed the proportionality constant, 3, into the material constant, k.

Combining Equations 4.79 and 4.75 gives

1 e N2 s = D)2 =7
_o_)é( ]\m) 45 (v =p)(2 f) (4.80)

peima ) T 16 (1 = 57)[100 — #(1 + 3v)]

Equation 4.80 gives a relation which can be solved for the effective Poisson’s ration
of the degraded material. Unfortunately, for given values of (; and v, the equation is
a cubic in 7 and the determination of 7 is a nontrivial calculation. As a simplification,
Equation 4.80 has been a} proximated with a linear, analytic function for » in terms of
v and (.

a:u<y-§ca . (4.81)

The error associated with using Equation 4.81 instead of Equation 4.80 to deter-
mine 7 1s generally less than 5 percent. Once 77 is known, it is used in Equation 4.74 to
determine the eflective bulk modulus of the material. The error of the bulk modulus
due to using Equation 4.81 instead of Equation 4.80 is less than 1 percent.

It is convenient to define a damage parameter, D. where 0 < D <1 as

D=L hmcs (4.82)
where ,
1 — &

fdﬁ)=%~j%;a (4.83)

This definition of damage follows directly from inspection of Equation 4.74 and results

in an expression for the total mean stress or pressure as

p=3ih(1~- D), . (4.84)

We assume that the deviatoric response of the material is degraded in a manner
consistent with the bulk response by defining a degraded shear modulus, fi such that

_ 3K -20) i
S = 2/16 = we . (48)‘

where S is the deviatoric part of the stress and e is the deviatoric part of the strain.
In addition the yield stress in tension is degraded by taking ¥ = (1 — D)Y, where Y
is the yleld stress in compression.




Taking the rate of Equations 4.82 through 4.85;

- 16 . 16 .
D= '(‘)—fl(l_/)cd + ?Cdfl('_/)a (4.86)
p=3K(1~ D), —3Ke,D, (4.87)
S = 2jie - 2jie, (4.88)
where 8/ 85
. 1 u .
) = ——C 4,
Hi(7) a0 3C, (4.89)
and ( DIK 35K ( )
. 8o(l - s {(1 — 20
L = o YT T8 (4.90)
It follows that
: 16 16 .
where )
21 - v+ %)
) = .92
Fi5) = S e (4.92)
and
y 5 ]\’](' ’ m-1_:
Cq = 3km - ST (4.93)
PClmar

Equations 4.87, 4.88, 4.91, and 4.93 represent seven coupled ordinary differential
equations to be integrated over each time step. In PRONTO, we use a simple forward

difference integration operator.

The damage material model requires six material constants to characterize the
material. Young's modulus, Poisson’s ratio, the yield stress in compression, and the
fracture toughness of the material are all conventional material properties which can
be obtained from standard material tests. The remaining two material constants are k
and m for the Wiebull distribution of Equation 4.76. The parameter m relates tensile
fracture to strain rate and has been determined by Kuszmaul [23] to have a value of
6. A definition of the parameter, k, has not been found. Fortunately, the model is not
particularly sensitive to the value of k, so it is reasonable to define k for the special
case of a Poisson’s ratio of zero. For the special case of v = 0 and a constant strain
rate, the definition of k is exactly the same as derived by Taylor, et al. [19] and is given

by
9 pCey 2 < 3Am )m
k= 4.94
40(m + 1) (KIC) (m+1)or (4.94)
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where o is the maximum volumetric tensile stress achieved in a test to failure at a
constant volumetric strain rate of €,.

If laboratory data for fracture stress versus strain rate are not available, it is pos-
sible 1o generate this data using an expression derived by Kipp, Grady and Chen. [24],

orEXEN 1)
Y iEkld (2 N 4.95
7F < 16N 2c, ) ‘ (4.93)

where Ng is a shape factor (1.12 for penny shaped cracks) and ¢, is the shear wave ve-
locity of the material. Equation 4.95 has been shown to be a reasonable approximation
for a number of rock types.

The damage material model uses five internal state variables:

DAMAGE - damage (Equation 4.82)
EVMAX maximum volumetric tensile strain experienced by
the material "

FRAGSIZE- average fragment diameter (Equation 4.77)

CRKDENS-  crack density (Equation 4.75)

EQPS

equivalent plastic strain

The PROP arrav for this material type contains the following entries:

Young's Modulus, E

PROP(1)
PROP(2) Poisson’s Ratio. v
PROP(3) Yield Stress. 0,4
PROP(4) m
PROP(5) - &
PROP(G6) Fracture Toughness, Aj¢
* PROP(T) Bulk Modulus, K
* PROP(8) [
* PROP(9) m -1
* PROP(10 COND= 2kmA}-/(pc)? (note: ¢ = /E/p)
* PROP(11 CONA= L(V20K c/pc)*?

4.5

Soils and Crushable Foams Model

The soils and crushable foams model in PRONTO is a direct descendent of the
model developed by Krizg [25]. Reference [25] is an unpublished Sandia National
Laboratories report and is not readily available. The model was described in detail
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Figure 4.8. Pressure Dependent Yield Surface for the Soils and Crushable Foams
Material Model

by Swenson and Tavlor {26] as it was incorporated into a tensile failure model. One
major difficulty with the original version of this material model which has confounded
users is that the pressure dependence of the vield stress is expressed in terms of Js,
the second invariant of the stress tensor. We have reformulated the model so that the
yvield stress is written directly in terms of the pressure. NOTE: this means that old

data must be converted.

The yield surface assumed is a surface of revolution about the hydrostat in devia-
toric siress space as shown in Figure 4.8. In addition, a planar end cap on the normally
open e¢nd is assumed. The yield stress is specified as a polynomial in pressure, p (pos-
itive in compression)

gyd = Qg + alp + 02P2. (496)

The determination of the yield stress from Equation 4.96 places severe restrictions
on the admissible values of ag, a;, and a;. There are three valid cases as shown in
Figure 4.9. First, the user may specify a positive ap, and a, and a; equal to zero as
shown in Figure 4.9a. This gives an elastic-perfectly-plastic deviatoric response, and
the yield surface is a cylinder oriented along the hydrostat in principal stress space.
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Second, a conical yield surface (Figure 4.9b) is given by setting a, to zero and entering
appropriate values of ap and a,. The program checks the users input to determine
whether a valid (negative) tensile fracture pressure, py,, results from the input data.
The third case results when all three constants are nonzero and the program detects
that a valid negative tensile failure pressure can be derived from the data. This case is
shown in Figure 4.9¢. A valid set of constants for the third case results in a parabola as
shown in Figure 4.9c. We have drawn the descending portion of the curve with a dashed
line indicating that the progiam does not use that portion of the curve. Instead. when
the pressure exceeds p*. the yield stress is held constant as shown at the maximum

value.

The plasticity theories for the volumetric and deviatoric parts of the material
response are completely uncoupled. The volumetric response is cemputed first. The
mean pressure, p. is assumed to be positive in compression and a vield function is

written for cie volumetric response as
Op = p = fle) (4.97)

where f(¢.) defines the volumetrie stress-sirain curve for the pressure as shown in
Figure 4.10. This function is defined by the user with the restriction that the slope of
the function must be less than or equal to the unloading bulk modulus. Ky . everywhere.
If the user wishes the volumetric response to be purely elastic. he simply specifies no
funiction identification (c.g.. FUNCTION ID = 0). The yield function. o,. determines

the motion of the end cap along the hydrostat.

The mean volumetric strain is updated as

o = - At (4.98)

where ¢, is the volumetric part of the strain rate (¢, = étrd).

There are three possible regimes of the pressure-volumetric strain response. Tensile
failure is assumed to occur if the pressure becomes smaller (more negative) than py,.
The quantity ¢;, is initialized to —-py, /Ko by the program. If tensile failure is detected,
the pressure is set 1o —ps.. Remember. pressure is negative in tensior! Failure by
monotonic tensile loading is shown in Figure 4.11a. As long as ¢, < ¢4,, the pressure

will remain equal to ~py,.

If the volumetric strain exceeds ¢4,, a check is then made to see if
€ < €y (4.99)

where ¢, is the most positive (compressive) volumetric strain previously experienced
by the material, set initially to zero by the program. If Equation 4.99 is satisfied, the

step is elastic and,
n+1

"t = p" — Kple,. (4.100)

63




(a) o
aog
P, COMPRESSION
(b) o
Ao
Py, P, COMPRESSION 4
(c) o
ag ! ‘\\
{ N
| N
| N\
/ pfr P* \\

P, COMPRESSION

Figure 4.9. Forms of Valid Yield Surface Which can be Defined for the Soils and ,
Crushable Foams Material Model q
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Figure 4.10. Pressure Versus Volumetric Strain Curve in Terms of a User Defined
Curve. f(¢.). for the Soils and Crushable Foams Material Model
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Figure 4.11. Possible Loading Cases for the Pressure Versus Volumetric Strain
Response Using the Soils and Crushable Foams Material Model
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. This elastic response is shown in Figure 4.11b.

If Equation 4.99 is not satisfied. the voluinetric response is along the curve defined

by fple,) and

])"*1 = fp((:?*l) (4]01)
) and we set
( €, = HJ”, (4.102)

This response is shown in Figure 1.11c. Note, that if Equation 4.100 1s used to de-
termine p, we also drag ¢;, along so that if we unload from the curve. fi(¢,). we will

fracture at the appropriate strain level as shown in Figure 4.11d.

The deviatoric part of the response is compnted next and uses a conventional plas-
.. . . . . . . ! | . . . . .
ticity theory with radial return. See Krieg and Krieg 114!, The trial elastic deviatoric
stresses are computed as

S' = S, + 2uAte (4.103)

where € is the deviatoric part of the strain rate. The current value of yield stress is

calculated using Equation 4.96 and the vonMises effective stress. @, is computed as
7 = \/ffszs . (4.104)

The vield condition is checked to determine whether & < a,4. If this is the case. the
trial stress is the correct deviatoric stress at the end of the time step. S, ., = S, If
vield is exceeded. a simple radial return is performed 1o calculate the deviatoric stress
at the end of the time step

Sy - 75"5". (4.105)

Finally. the total stress is determined by

Ons1 = Sn-&] + pvn-+16 . (‘1](]0)

The Sotls and Crushable Foams model uses four internal state variabie®

EVMAN - maximum compressive volumetric strain experienced
(always positive)
. EVFRAC - current value of volumetric fracture strain (positive
( i compression)
EV - current value of volumetric strain (positive in compression)
NUM - integer pointing to the last increment in the pressure

function where the interpolate was found

The PROP array centains the following entries for this material:

@
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PROP(1) - 2pu

PROP(2) - Bulk Modulus, A

PROP(3) - ay

PROP(4) - a,

PROP(5) - a,

PROP(6) - Function 1D number

PROP(7) - Tension Cutoff Value
* PROP(8) - P

4.6 Low Density Foams

The low density foams model presented here was developed by Neilsen. Morgan.
and Krieg [27] and is based on results from experimental tests on low density, closed-cell
polyurethane foams. These foams, having densities ranging from 2 to 10 pounds per
cubic foot, have been proposed for use as energy absorbers in nuclear waste shipping
containers. Representative responses of closed-cell polyurethane foams for various hy-
drosiatic. uniaxial and triaxial laboratory tests indicate that the volumetric response of
the feam is highly dependent on load history. This implies that tvpical decompositions
of total foam response into an independent volumetric part and a mean stress (pressure)
dependent deviatoric part are not valid for this class of foam. Many “soil and crush-
able foam”™ models. inclnding the foam model described above in Section 4.5, use such
decompositions and hence are not valid for Jow density closed-cell polyurethane foams.
The model presented here reproduces experimental test responses more accurately for
this class of foams than the model 1 Section 4.5,

The experimental tests on which this model is based were performed by the Civil
Engineering Rescarch Facility of the University of New Mexico with the results reported
in Reference i27]. Foam samples were subjected to static, compressive stresses during
these tests. In most of the tests, air was trapped in the closed cells of the foams and
could not escape because the samples were jacketed with an impervious material. In
this constitutive model. the total foam response is decomposed into contributions from
the skeleton and from air trapped in the closed cells of the foam. The contribution of
the air to the total foam response is dependent on the application. If the foam is used
in a vented application where the air can escape, the contribution of the air is zero and
the foam and skeleton responses are identical. If the foam is used in an application
where the air cannot escape, such as a sealed shipping container, the foam pressure is
considered to be the sum of the pressure carried by the skeleton and the air pressure.
That 1s,

PE O Pk Pair ‘ (4.107)
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where pr and p, are the mean stress (first invariant of the stress tensor divided by

three) of the foam and skeleton, respectively. The mean stresses and air pressure are

assumed positive in tension. The air pressure is determined from
Po7Y

1+v-¢

where 5 is the engineering volume strain (first invariant of the total strains) which is

(4.108)

Pair =

positive in tension and py and ¢ are model parameters. The parameter po is the initial
air pressure (usually atmospheric pressure of 14.7 psi), and ¢ is the ratio of the foam
density to the polymer density from which the foam 1s produced.

Test data indicate that the skeleton response in any principal stress direction is
independent of loading in any other principal stress direction. Thus, Poisson’s ratio
for the skeleton is equal to zero. Test data also indicate that the yield strength of the
skeleton in any principal stress direction can be expressed in terms of the engineering
volume strain and the second invariant of the deviatoric strains with the following

relationship

B(1 = ()i 110 =0 (4.100)

where 11, is the second invariant of the deviatoric strain tensor: 4 is the engineering

[ = { A+ B(l+Cy)1l.>0

volume strain as in Equation 4.108: and A, B, and (" are constants determined from
itting Equation 4.109 to the laboratory data. Constants B and (" are determined from
hydrostatic test data here 11, is zero. and . is determined from any test where the

loading 1s deviatoric.

Numerical implementation of the model is as follows. Foam stresses and strains
from the previous time increment are saved. At the beginning of the next time incre-
men?, the old skeleton stresses are computed from the old foam stresses and the old air
pressure. The strain rates for the new time increment are used to determine new strain
increments and trial elastic stress increments for the skeleton. These stress increments
are added to the old skeleton stresses to produce new trial stresses for the skeleton. The
trial skeleton stresses are then rotated to principal stress directions and compared with
the yield stress determined from Equation 4.109. If yield occurs, the skeleton stresses
arc set 1o the yield stress. If yield does not occur, the trial skeleton principal stresses
become the {inal skeleton principal stresses. The final skeleton stresses are obtained
by rotating the final skeleton principal stresses back to the unrotated configuration.
Then, the final foam stresses are obtained by adding the air pressure contribution for
the new strain state to the new skeleton stresses.

Input parameters for the model are the constants E,py, ¢, A, B, and C which are
defined above. If the foam is used in an application where the air can escape, py should

s
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be input as zero. Otherwise, po is the atmospheric pressure at the beginning of the

simulation.

The Low Density Foams model uses one internal state variable:
PAIR - internal air pressure

The PROP array contains the following entries for this material type:

PROP(1) Young’s Modulus, E

PROP(2) A

PROP(3) - B

PROP@4) - C

PROP(5) - NAIR (6 = air, | = no air )
PPOP(6) - mo

PROP(T) o)

4.7 Hydrodynamic Materials

All of the equations of state described in Chapter 5 are used by specifying a
hvdrodynamic material type. This material type has only volumetric or mean stress
response and no deviatoric response. The pressure is calculated in the equation of state

and the stress is set as

o=-p§ . (4.110)

Note that the pressure is assumed positive in compression in the equations of state.

The hydrodynamic material requires the user to input a pressure cutofl which is

positive in compression.

There are no internal state variabies for this material type.
The PROP array contains only one entry for this material:

PROP(1) - Pressure cutoff

4.8 Elastic-Plastic Hydrodynamic Ma'erial

The elastic-plastic hydrodynamic material model is a combination of the elastic-
plastic combined hardening model described in Section 4.2 and the purely hydrody-
namic material model described in Section 4.7. In this material model, we uncouple

</
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the volumetrnie and deviatoric response. The volumetric response is determined us-
ing one of the equations of state defined in Chapter 5. and the deviatoric response is

determined using the cquations of Section 4.2.

First. we calculate the deviatoric response. This is accomplished in a manner
almost identical to Section 4.2.5. We calculate a trial deviatoric stress

S" =S, +2ueé : (4.111)

where e 1s the deviatoric part of the strain rate. d. and 2y is the usual Lame constant.
We then proceed exactly as in Section 4.2.5 with an incremental consistency condition
and determine the increment in equivalent plastic strain. update the radius of the vield
surface, and update the backstress. The same radial return correction is applied to the

deviatoric part of the stress tensor.

We then update the energy 1o include the increment due to the deviatoric energy

contribution m Equation (5.1.9).

Next we call the appropriate eqnation of state to calculate the new pressure at the

end of the time increment. Onee this is known. we determine the total stress by

T, .y - S”-l - [’6 . (“1.11‘3)

The elastic-plastic hyvdrodyvnamic material model ures eight internal state vanables:

EQPS - equivalent plastic strain

RADIUS - current radius of vield surface

ALPHALTL - xx component of backstress in unrotated configuration
ALPHA?22 - vy component of backstress in unrotated configuration
ALPHAZ33 - 22 component of backstress in unrotated configuration
ALPHATI2 - xyv component of backstress in unrotated configuration
ALPHA23 - vz component of backstress in unrotated configuration

zx component of backstress 1 unrotated configuration

ALPHAJI

The PROP array for this material contains the following entries:

PROP(1) - Y()ung's'j\‘]odu]us, E
PROP(2) - Poisson’s Ratio, v
PROP(3) - Yield Stress. a4
PROP(4) - Hardening Modulus, E'
PROP(5) - 4

PROP(6) - pressure cutoff
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PROP(7) 21 4
* PROP(&) 12u(1 = H''30)) (Note: H' = H/{1 - H/E)
* PROP{Y) - )
| * PROP(10) - 23H"3
* PROP(11) - 200 4yH" 3
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5. EQUATIONS OF STATE

The discussion of the hydrodynamic equations of state incorporated in PRONTO
follows closely the development of the theory found in WONDY (28" and TOODY 29

5.1 Introduction

The equation for conservation of energy equates the increase in internal energy
per unit volume to the rate at which work is ‘being done by the stresses and the rate
at which heat i1s being added. In the absence of heat conduction.

‘ FE,, 148 » . .
£ "60"7 (- q);%’f o —pb)ié=p0 . (5.1)

We note that in Equation 5.1, pis the pressure measured as positive in compression,
and ¢ is the pressure due to the bulk viscosity. from Fauation 3.70. which is negative in
compression. Alsoin Equation 5.1, E is the energy per unit volume. E,, is the energy

per unit mass. and ()15 the heat rate per unit mass.

The continuity equgtion can be written as

1 dp
S rd = - dyy (5.2)
/) (){
The deviatorie part of the strain rate is
. ] .
e=d - ;;1rd5 (5.3)
and the pressure is given hy
1
1
p=—stio (5.4)
J

Rewriting Fquation 5.1 in terms of the pressure and the deviatoric part of the
stresses. §)
L= (q—=pldu +S:¢+pQ . , (5.5)
An equation of state is assumed for the pressure as a function of density and energy
per unit mass

p=1(p.Em) {9.6)

In PRONTO we use equations of state linear in internal energy of the form

p= filp) + fo(P)Em . (5.7)




We find it convenient in the numerical implementation to work with energy per unit
volume instcad of energy per unit mass and rewrite Equation 5.7 as

p= filp) + f3(p)E, (5.8)
where we have defined a new function, f3(p) = %2

Assuming there are no heat sources and the strain rates are constant over the
step. we can integrate Equation 5.5 to obtain the following discrete form of the energy
equation:

Al At ‘ .
E'- At _ E' - —,)_((]{ LGttt gt o _r)_(S’ + S8 e (5.9)

Equations 5.9 and 5.8 represent two linear equations in two unknowns: E'*=!' and
pHAr.
Defining £ by

At At

E: = E' 4 T(qg' + ¢ = p")dr + =—(S" + 83 . ¢ (5.10
t 1 D} q q p ‘)
we rewrite Equation 5.9 as
At .
[’;:" At iz E: — —()“]7! A{(Ikk . (':)']])

If we have a completely hydrodynamic equation of state (see Section 4.5). there
are no deviatoric terms in Equation 5.10 (i.e.. S and e are both zero). For the elastic
plastic hvdrodynamic iaterial (see bection 4.9), the deviatoric and volumetric response
are uncoupled. We first determine the deviatoric response and calculate the deviatoric
strain energy in Equation 5.10. Then we proceed with the equation of state calculation.

The bulk viscosity pressure as defined in Equation 3.74 contains a linear and a
quadratic part. Careful inspection of Equation 3.74 along with the definition of the
stable time increment given by Equation 3.71 shows that the quadratic part of ¢ is
mdependent of the effective dilatational modulus, while the linear part is not. At the
time we must caleulate £ in Equation 5.10, we do not vet know the effective moduli
for the time step since 1t depends on the new pressure. To avoid the need to iterate to
solve Equations 5.10 and 5.11. we do not include the energy due to the linear term in

the calculation.

By substituting Equation 5.11 into 5.8, we can solve for the new pressure;

P filp) + fa(p)E; . (5.12)

1+ f3(p) 2t di

After calculating the new pressure using Equation 5.12, the energy can be updated
using Equation 5.11.




5.2 Mie-Gruneisen Type Equations of State

The designation Mic-Gruneisen equation of state refers to any equation of state

which is linear in energy. The most general form is
p~pu =Tp(Em — En) . (5.13)

where py and Ey are the Hugoniot pressure and specific (per unit mass) energy along
some reference path and are functions of density only. The Gruneisen ratio, I, is also
a function of density only. The Hugoniot reference pressure py(p) is generally defined
from fits to experimental data.

The Hugoniot specific energy is related to the Hugoniot pressure by

By = 21 (5.14)
2po
where
p=1-12 (5.15)
p
The Gruneisen ratio is usually approximated as
I'(p) =To(1+ hyn 4 hon* + 1) . (5.16)
Using Equation 5.14 in Equation 5.13 leads to
' /p . oq-
p=pn |1+ = — =1 +FpEm . (5.17)
2 £o
Equation 5.17 has the form of Equation 5.7:
p = hHlp)+ fap)Em s (5.18)
where . r
H .
fl(ﬂ)=P11(1+7)—> (5.19)
frlp)=Tp , (5.20)
and
/,:<_P__ >_£,, (5.21)
Po , Po
The most common form for Equation 5.16 is to use h; = —1 and all other h; = 0 which
gives
F=To2 . | (5.22)
p

All of the Mie-Gruneisen equation of states in PRONTO use the form given by Equa-
tion 5.22.




5.2.1 Linear U, - U, Hugoniot Form

A common fit to Hugoniot data is given by

2
PoCol .
gy = e 5.23
! (1-s9)? ( )
where ¢g and s come {rom the linear shock velocity-particle velocity U, — U, fit
U, = C¢p t+ SUP . (524)
Equation 5.23 follows directly from the relations
pr = Uppol, (5.25)
and .
U,
Us
We sce that there is a limiting compression given by the denominator of Equation 5.23
1 -
Niym = — (521)
s
or 5p
0 -
Plim = (028)
s—1
Also, at 7 = =1 there is a tensile minimum and thereafter, negative sound speeds are

calculated for the material. Since Equation 5.23 is intended for use in compression.
caution is advised if the model is used ir response regimes where large tensions are

expected.

For this form of the equation of state, we see that

2
_ Poca? Ty 5
i) = 2 (1-F) (529)
and r
Js(p) = —‘;—p" =T . (5.30)

5.2.2 Power Series Hugoniot Form

Another common form for the Hugoniot is to express the reference pressure, py,
in a power series 1n 17,

PH = I(o?](l + I'x’17,‘ + 3’2772 4+ .. ) . (5-31)
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In order to match g—gﬂ at n = 0 it is necessary that
n

where R is the adiabatic bulk modulus at zero pressure and room temperature, and
¢o 1s the bulk sound speed.

For this Hugoniot form, the equation of state is defined by

. r
filp) = Kon(1 + Kin + Kan®) (1 - —;) (5.33)
and r
fi(p) = (;po =T (5.34)

where we have restricted ourselves to using only three terms in the polynomial in
Equation 5.31.

5.2.3 Ideal Gas Equation of State

The ideal gas equation of state is given by

p=1(y—1)pEn . (5.35)
where 4 is a material parameter.
Hence, we see that
filp) =0 (5.36)
and :
falp)=(r = 1) . (5.37)

The initial sound speed in the gas, ¢, must be defined by the user. The initial pressure
and specific internal energy per unit mass are

) :
po = B%CE (5.38)
and
&

Emo = m . (539)

The initial pressure and energy per unit volume

&

Ey=pEn, = P (5.40)

are initialized inside the code.
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5.2.4 JWL High Explosive Equation of State

The Jones-Wilkins-Lee or JWL equation of state [30] provides the pressure gener-
ated by the release of chemical energy in an explosive. In PRONTO it is implemented
in a form which is usually referred to as a programmed burn. A programmed burn
means that the reaction and initiation of the explosive is not determined by the shock in
the material, rather the initiation time is determined by a Huygens construction using
the detonation wave speed and the distance of the material point from the detonation
point(s).

The JWL equation of state is generally written as

) p P z
- A<1 _wp )C(-R,—})+B<1_ wp )e(—ﬁz;ﬂ)+fﬂ_gmo (5.41)

Rypo Ry po Po

where A, B, R, R,, w, and E,,, are material constants. Note that Equation 5.41 is
written in terms of energy per mass which is the usual form found in the literature.
Again, we chose to write our equations of state in terms of energy per unit volume

which results in

filp) = A (1 - f}%}) M) 4B (1 - R“:ig) (-R:%) (5.42)
and p
falp) = e (5.43)

The programmed burn requires the initial calculation of the arrival of the detonation
wave at a material point. If there is only one detonation point denoted by z4, and if the
location of the material point is denoted by z,, then the detonation time is determined
by

i Td = Tn l

fg= "1 (5.44)

Cd

where ¢4 is the detcnation wave speed (a material property supplied by the user) and
the symbol | - | indicates the euclidean norm of a vector. Clearly, if there are multiple
detonation points, then Equation 5.44 must be applied for each material point for each
dctonation point and the arrival time is the minimum.

In order to spread the burn wave over several elements, a burn fraction F is

(t — td)cd}
B,l

where B, is a constant which controls the width of the burn wave (defaulted to 2.5 in
the code) and [ is the characteristic length of the element which is calculated internally

computed as

F = min [1, (5.45)
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in the code as the square root of the area of the element. If the time t is less than {4 .
the pressure is zero in the explosive. Otherwise, the pressure is given by

p=Fifilp)+ falp)Es] . (5.46)

When ¢ < ty the detonation wave speed is used as the sound speed in the material.
After the detonation wave has arrived, the sound speed is calculated internally {from
the hvpoelastic stress rates and strain rates just as for all other materials.

This form of the equation of state requires that the internal energy per unit volume
be initialized to account for the chemical energy in the explosive. Parameters for a wide
variety of explosives have been tabulated by Dobratz [51].




6. CONTACT SURFACES

PRONTO currently supports two types of contact surface boundary conditions: a
deformable surface against a rigid plane. and two distinct deformable surfaces against
cach other. The first option requires a far simpler procedure since the constraints on

cach node are completely uncoupled.

Contact is treated as a kinematic constraint by PRONTO. This means that the
final product of the contact algorithm is to modify the accelerations of the nodes along
these surfaces such that the kinematic constraints are satisfied.

PRONTO supports friction for both contact surface options. Either a simple
Coulomb friction model or a velocity-dependent friction model may be selected.

6.1 Deformable-to-Rigid Surface Contact

The rigid surface option in PRONTO imposes the kinematic constraints of an
anvielding plane on a user-specified surface of the deformable body. The plane is
defined by a point X and the outward unit normal n. The deformable surface can
be treated as simply a set of unique nodes. The primary kinematic condition is that
the Jdeformable nodes mav not penetrate the rigid plane. In addition. the motion of
deformable nodes along the plane may be restricted subject to a velocity-dependent

friction law.

6.1.1 Normal Constraint

We begin by integrating the motion of the deformable nodes without regard to
the kinematic constraints required by the rigid surface. For each node. we calculate a

predicted kinematic state as follows:

f
d= — (6.1)

m
v=v-+Ala (6.2)
% =x+ A1V (6.3)

In the above equations, f is the residual force vector (sum of external forces minus
sum of internal forces), m is the nodal mass, v is the current velocity, x is the current
position, and At is the time increment. The predicted kinematic quantities are denoted
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by a superposed hat. The predicted velocities are temporarily stored in the residual
force array.

We now calculate the depth of penetration ¢é of each node into the plane as given

below. This depth is zero for nodes which are not in contact.
& = max(n-(X — x),0) (6.4)

The magnitude of the force which must be applied to enforce the kinematic constraint,

i.e.. which will cancel the penetration, is given by

dbm .
fn = Zﬁ . (6.0)

This force must be applied in the direction of n. Applying this correction to Equa-
tion 6.1 and climinating the nodal mass. we can express the new acceleration in the

absence of friction as

é
ly, = Z't-; \ (66)
a=a-=a,n. (6.7)

86.1.2 Friction

Friction resists tangential motion of deformable nodes contacting the rigid plane.
The predicted tangential velocity of a node is orthogonal to the outward normal and,

therefore. is expressed by

v.=Vv—-(n-vin. (6.8)
The above velocity is decomposed into a magnitude and unit direction vector as follows:
Uy T VeV, (69)
v.‘
s = — (6.10)
T,

The force which must e applied to cancel the tangential velocity of a node is then

given by
mu,
.= —— . 6.11)
f At ( /

where the minus sign above reflects that this force would be applied in the direction of

. s, but opposing the motion.

PRONTO currently supports three options for friction: no friction, Coulomb {ric-
tion with a constant coeflicient of friction, or the velocity-dependent friction law found
in HONDO 1I [32]. The coefficient of {riction can be expressed by

= fleo + (Ho = Hoo)e ™" (6.12)
™M
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where g and i are the low- and high-velocity {riction coeflicients, respectively, and
7 1s a decay constant. Clearly, if 4 equals zero, the coefficient of friction is the constant
tto. Futhermore. if o is also equal to zero, the surface will be frictionless.

The magnitude of the tangential force exerted by the plane on a node cannot
exceed the maximum friction force. This constraint is expressed as

fr= !.?l min{ fn, 1 fol) - (6.13)

Substituting Equations 6.5, 6.6, and 6.11 into the above, then eliminating the nodal

mass yields

v v
min(pua,,

] At

The 1otal acceleration of the node is then given by

) (6.14)

a, = —

a=a+a,n -+ a,s. (6.13)

6.2 Deformable-to-Deformable Surface Contact

The fundamental condition which must be satisfied between two contact surfaces
is that one surface may not penetrate into the other. The algorithmic challenge 1s
to find the set of nodal forces which will maintain kinematic compliance. The classic
difhculty of contact algorithms is that elaborate and exhaustive schemes to maintain
strict compliance are prohibitively expensive to implement and to execute. Further-
more. because the surface is discretized for the finite element method, it is virtually

impossible to pose an algorithm which always vields unique and meaningful results.

The contact algorithm in PRONTO is designed to handle very large deformations
and ligh impact velocities. The goal of the contact algorithm is that it function prop-
erly to the capability limits of a Lagrangian mesh. The sample problems in Chapter 9
illustrate a fairly representative, but by no means exhaustive, range of applicability of
the PRONTO contact surfaces.

PRONTO uses a partitioned kinematic approach to contact. The partitioning
can be adjusted to give a strict master-slave treatment or to balance the master-slave
relationship between the two surfaces. In any case, the constraint forces conserve

momentuin,

The contact algorithm is performed in two passes; first with one surface as the
master, then with the other surface as the master. One of these passes will be skipped
if a strict master-slave treatment 1s requested. The following sections describe just one

such pass.
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6.2.1 Surface Topology

A surface in PRONTO must be continuous and simply-connected. It may be either
an open surface with a continuous, simoly-connected perimeter or a closed surface, such
as the surface of a sphere. The ‘inside’ of the surface to PRONTO is where the material
lies: it 1s assumed that there is no material on the ‘outside’ of the surface. In order for
a surface node to form a valid connection, all adjoining faces must have material on
the same side.

PRONTO carefully checks the topology of contact surfaces during initialization.
It will print an appropriate error message(s) if the surface is either multiply connected
or discontinnous. If the surface is found to be valid, PRONTO will build the data

structures which describe the topology of the surface as described below.

The node list data structure, NODJCT(NNODES), uniquely contains the nodes which
appear on a given surface. Most nodal data within PRONTO's contact algorithm are
referenced by surface node index, rather than global node index. From this perspective,
the node list data structure contains the global node index of each surface node.

The facial node map data structure, JCTFAC(4,NFACES) . contains the surface node
indices of each face on a given surface. PRONTO uses the right-hand rule to define the
direction of the outward normal. In other words. the facial nodes circulate counter-

clockwise white looking at the outside ofthe face.

The nodal face map data structure, KNRJCT(MAXFAC,NNODES), contains the index of
each face connected to each surface node. By convention, the faces circulate clockwise
around the node while Jooking at the outside of the surface. This data structure is
made rectangular. based on the maximum number of faces connected to any node on
the surface, for efficiency. The face counter data structure, KNTFAC(NNODES), contains
the number of faces actually connected to each surface nodge. A row of the nodal
face map about node I, which is contained within KNRIJCT(1:KNTFAC(I),NNODES),
represents a closed loop (circular list) of faces for an interior node, or an open loop

(straight hst) of faces for a perimeter node.

6.2.2 Surface Geometry
PRONTO recalculates the geometry of all contact surfaces at each time step. A

predicted configuration is computed by integrating the motion without regard to the
kinematic constraints required by the contact surfaces. For each node we calculate:

£
i= — (6.16)
m
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V=v-Ala (6.17)
%= x+ AtV (6.18)

In the above equations. { is the residual force vector (sum of external forces minus
sum of mternal forces). m is the nodal mass. v is the current velocity, x is the current
position, and At is the time increment. The predicted kinematic quantities are denoted

by a superposed hat. The predicted accelerations are never stored in a global array.

PRONTO uses the average surface normal to resolve contact at corners. This
vector quantity is derived for each surface node from the mean face normals connected
Iy
1

to that node. First, the mean face normal of each face is calculated and normalized as
follows.
Ny = (x2+ X3~ X3 — Xg) X (X2 + X4 — X; ~ X3) (6.19)
N,
Ny = —zm==== (620)
VN7 N

The average surface normal for a given surface node is then calculated by summing the
unit face normals of cach face connected to that node. Since PRONTO admits highly
warped (nonplanar) faces in the contact algorithm, it is not useful to retain the face

normals.

8.2.83 Surface Tracking

Surface tracking is the process of matching points along one surface to points along
its mating surface. PRONTO s tracking algorithm hinges on finding the nearest point
on the master surface 1o each slave node. This is a nonunigue point which lies within
one or more master faces. The nearest face is the master face contamning the nearest
point on the surface. Once we have determined the nearest face, all that remains is to
determine if the slave node is contacting that face or one of its neighbors. in the next
section {6.2.4), we describs how we decide whether the slave node 1s in contact and

which master face 1t is contacting.

The tracking algorithm truly governs the cost/benefit of the contact surface ca-
pability in PRONTO. The amount of gecometric detail that the tracking algorithm can
resolve determines the range of aprlicability of the contact surfaces. On the other hand,
exhaustive checks of every slave node against every master face during every time step
will always be prohibitively expensive, and generally unwarranted. The tracking algo-
rithm, therefore, is an area where compromises must be made, but where cleverness
will pay off.

PRONTO tracks the nearest master node for each slave node. It is important to
understand that in this context the ‘nearness' of a node js measured in terms of the
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surficial (along the surface) distance, rather than the spatial (straight line) distance.
The nearest node, therefore, is defined as the nearest facial node to the nearest point
within the nearest face. The preciseness of this definition is crucial to resolving sharp
corners, as illustrated in Figure 6.1.

Slave Node

Surficially Nearest Master Node

Figure 6.1. Surficial Versus Spatial Distance

To streamline the tracking algorithm in PRONTO, we assume that the nearest
master node to a given slave node at one time step will be in the vicinity of the nearest
master node at the next time step. This assumption allows us to update the tracking
scheme by simply searching for a local minimum in the vicinity of the previously
nearest master node. Thus. at each time step, we start at the previously nearest node
and scarch via the nodal face map for the nearest point and face among its connected
faces. We then find the new nearest master node. If the nearest node changes, we
update and continue the scarch process, until a stable nearest node is attained.

We initialize the tracking scheme for each slave node § by simply finding the

spatially nearest master node I, which has the minimum distance d; defined by

(/5 :(X/—Xg)'(XI—XS). (6.21)

The tracking algorithm could fail if the local minimum scheme does not find the
global minimum. This failure is extremely unlikely to occur (in fact, 1t has never been
observed), because incremental geometric changes over a time step are forced to be
small by the explicit integration scheme. The situation could be remedied, in any case,
by simply restarting the calculation (Appendix A, command 4 and 5) at an appropriate
time. PRONTO reinitializes the tracking data when it reads a restart file, which forces
an exhaustive search for the nearest master node via Equation 6.21.

In addition to the pathological cases described above, the tracking algorithm in
PRONTO does not yet support a surface contacting itself. This capability would be
useful for buckling shells which fold upon themselves. The problem in this instance is
that the tracking scheme will always find that each node is contacting itself. Presently,
the only way to handle this situation is to divide the surface at the crease points. The
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best approach is to run the calculation with fairly frequent restart dumps (Appendix
A, command 5). identify a restart state which occurs after the surface has buckled, but
before contact, then restart from this state (Appendix A, command 4) with the proper
contact surfaces inserted. The greatest difficulty with this technique is that it requires
manipulation of the GENESIS mesh file {2].

The success of the tracking scheme depends most heavily on determining the
nearest point on an element face to a given slave node. This amounts to a nonlinear
constrained minimization problem. The vector from a slave node § to a point on an
clement face (represented by face nodes 1 — 4 is expressed in terms of the isoparametric

face coordinates as follows.

d=t+fu-+nv+nw (6.22)
where
t = M(+X) X2+ X3+ X4) ~ X5 (6.23)
u = (=% 4 %4 X3 — Xy4) (6.24)
Vo= %(“‘Xl—xz‘:*xrs-‘rx«;) (6.25)
woom o (#X) = Xy Xy - Xy) (6.26)

We seck € and 3y which minimize d - d subject to the following constraints.

|
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Since Equation (.22 is bilinecar. the inner product of d is fourth-order. Since the
inner product is also positive definite. it cannot have a maximum. Therefore, the
general c¢i e has two minima between a saddle point. The most rapidly converging
technique Jor nonlinear minimization is Newton’s method. However, Newton’s method
has two problems in regard to our application. First, it requires a good initial estimate
to avoid the saddle point. Second, it does not enforce the constraints.

The technique implemented in PRONTO for finding the nearest point generates
a good initial estimate which properly accounts for the constraints. Newton’s method
is then applied to improve this estimate. PRONTO starts by finding the constrained
minimum, i.e., the nearest point on the perimeter. The nearest point on cach edge is

given by the following eauations, respectively.

£ = max <—-%,min <+ , = (= 5v) (u - 5w)))> (6.29)

(u=3w)-(u-2w
7, = max (—%,min <+

L

2

T

(v + %w)-(v—{- %w)

-
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{3 = max (-—%,min (*%,— ( fV) ( QIW) )) (6.31)
o (utaw) o (u - ow)
t—u)-(v-1lw
T4 = Max (—?,min (4%,-- ( 2 ) 5 ) >> (6.32)
: (v iwl (v - Iw)

The nearest perimeler point is the nearest of the above points, whose respective dis-

tances are given as follows.

minl d-d= (t- %v) St — %v) + &(t — %v) Hu - tw) (6.33)
e
min; d-d=(t+ %u) St + %u) + Mt = 2u) (v = Lw) (6.34)
(=5
min d-d = (ts V) (b gv)+ &t - Jv) - (u - fw) (6.35)
ne et
min;d d = (t - %u) <(t - %u) + 4t — %u)-(v - %w) (6.36)

£- -
& "

The next step is to estimate an unconstrained minimum by searching for a nearer
interior point. To accomplish this task. PRONTO uses edge triangles: these are the
four triangles formed by an edge and the face center. The edge triangles properly
approximate all of the significant features of the warping of a bilinear element face,
but since they are planes, it is straightforward to find their respective nearest points.
First. we need the nearest point to each of the major chords, which are given below.

: t-v .

Ng = — ——— ((1.3.‘)
V.V

: t-u

fp = - (6.38)
u-u

The nearest point to cach edge triangle ~an be determined from Equations 6.29-6.32
and Equations 6.37-6.38. subject to both the externai constraints of the edge and the
internal constraints of the triangle. The results are as follows.

N = max —%,min (ii; %_?%i,ﬁ—fflaja%(llal | (6.39)
£, = min (+%amax (*TZ; i“:f , o - fzjha:ém&) (6.40)
73 = MmMia (%-%, max (li; ia;:' , o —183_53&—;050303) (6.41)
{4 = max (\—%,min <]ﬁ4a: _%_014} , b —104_{740_:2(1404) (6.42)
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G=G-mln - 3) (6.43)
s ol ) (6.14
fo= &= aaly = }) (6.45)
Na = g g€ - %) (6.46)

where the indeterminate sipu in the denominator of the internal constraint in Equa-
tons 6.39-6.42 takes the sign of the quantity in the numerator. The other quantities

mtroduced above are evaluated az {ollows.

(u - iw)-v (6.47)
ar (u - %w)~(u~%w) '
(v « ‘w)-u
Qg 5 o (6.48)
(v - JVV) . (V -+ éW)
(u-= w)-v .
(tq - S A (()49)
(u - Zw)-(u = w)
(v - Iw).u
(g - E e (6.50)

fu - w)-v ‘
f, e (G.51)
\' . \!
(v - 'wj.u )
t, - (6.52)
u-u
(u - ‘w)-v
9y S e (6.5H3)
\' LI V4
(v —-2w) u .
Hy e e e (().:)J )
u-u

The final step in PRONTO s nearest point location algorithm is to improve the
edee triangle estimate via Newton's method. The solution estimate is iteratively im-

proved by solving the following svstem of equations:

(v - yw)-(u- ypw) (U ypwy-(v+Efw)-d-w A

fu - pw)-(v-fw) ~d-w (v +&w) (v +w) Ay
] d e (usgw) -
= { “d (v -+ fw) } (6.55)

Three Newton iterations are performed in PRONTO. This assures approximately three
digit precision in determining the nearest point. Note that if the external constraint.in
Equations 6.39-6.42 has to be enforced, no unconstrained minimum exists; therefore,
the Newton iterations arc ignored.
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8.2.4 Determination of Contact

PRONTO’s approach to determining contact is based on the premise that a slave
node usually contacts the nearest face as defined in the previous section. PRONTO
requires two conditions for contact: the slave node must be penetrating and within a
inaster face. The node is penetrating if and only if it projects to the inside of the face
at the nearest point. The condition is expressed as follows:

d-(vo+9w)x(v+Ew) <0 (6.56)

The node is within the face if and only if it projects normal to the face at the nearest
point. This strictly requires that the right-hand side of Equation 6.55 vanish. In
practice, we determine if the node projects within ¢ and 7, respectively, as follows:

d-utgw) |,
S+ € .57
,f (u+7;w)-(u+77w)' 2 (6.57)
577 N d.(v-{-fw) | %+€ (6,58)

(v +&w) (v +Ew)
where ¢ 1s a small dimensionless number; we use ¢ = 0.001.

The ideal condition for determining contact is that the slave node is penetrating
and projects within exactly one master face. Unfortunately, this definition leads to
several ambiguous cases because the surface normal is not continuous. One must

impose further conditions in order to resolve these ambiguities.

Since the surface normal is not continuous across element faces, the surface gener-
ally forms a crease at an edge. When the angle between two faces becomes significant,
we refer to the edge as a corner. There are two general cases, inside and outside corners,
which pose distinctly different problems for the contact algorithm.

When two adjacent faces form an inside corner, there is crevice where a slave
node could be penectrating the surface, but not project normal to either face. This
case is illustrated in Figure 6.2. PRONTO’s solution to this ambiguity 1s to relax the
applicable Condition 6.57 or 6.58 for the nearest face if the slave node is penetrating
the adjacent face. This situation does not apply to a free perimeter edge since there is

no adjacent face.

In the case of an outside corner, there is an overlap where a slave node could be
contacting either face, as illustrated in Figure 6.3. In this instance, the average surface
normal defined in Section 6.2.2 is used to resolve the ambiguity. If the average surface
normal of the slave node is more strongly opposed to the adjacent face than to the
nearest face, the adjacent face has priority for contact. The adjacent face, however,
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y / Slave Node

7

Master Surface

Figure 6.2. Inside Corner

must further satisfy Conditions 6.56-6.58 1o be in contact. To perform the opposition
tests, we must first normalize the projection vector to each face as follows:

§=vd-d (6.59)

m = %1 (6.60)

We then determine if the average surface normal of the slave node, ng, is more opposed
to the adjacent face normal, my, than the nearest face normal, my, as follows:

nsg-my < Nng-my (6.61)

Master Surface

[/

Slave Node

Figure 6.3. Outside Corner

The logic that PRONTO follows to determine contact once it has identified the
nearest face is summarized in Figure 6.4. In this figure, precedent and antecedent refer
to faces adjacent to the nearest face within the nodal face map (Section 6.2.1) about
the nearest node. Note that there are only three basic questions. This logic is so simple
that it can be vectorizad efficiently.




Is slave node most opposed

Is slave node most opposed
to precedent face?

: o en?
no no Lto antecedent face?

Y

yes yes

Is slave node penetrating
no no and within antecedent face?

Is slave node penetrating
and within precedent face?

1
Is slave node penetrating and within
yes (or penetrating adjacent face)

yes
nearest face?
yes no
v

Contact Contact No Contact
Precedent Nearest \ Antecedent
r N Contact
‘ace Face Face

Figure 6.4. Contact Determination Logic

N
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8.2.5 Contact Forces

We use a partitioned kinematic approach to enforce compliance between two con-
tact surfaces. This means that each surface acts as a master for a fraction of each time

step and as a slave for the remainder.

The first task in restoring compliance is to calculate the penetration forces imposed
on the master surface by the slave surface. We define these forces as a fraction of the
forces which would be imposed by the slave nodes if the master surface was rigid. This
fraction is the partition factor 8, which represents the fraction of cach time step for
which these surfaces act as master and slave, respectively. Their roles are reversed for

the remaining fraction (1 — 3).

The penetration force for a slave node is expressed by

RIS © o
f, = SNE; n (6.62)

where ms is the mass of the slave node. The penetration depth. é, and vector, n, are

defined in Equations 6.59-6.60.

Next we want to find the response of the master surface to these penetration forces.
such that the response of cach contacting slave node is constrained by its master nodes

as shown below.,

an = (- Ol = man
(= OG- man
= (3= 005+ ang
4+ (3 = O3+ nan (6.63)

where a,s. and a, thru a,, are the acceleration responses of the slave node and master

nodes, respectively.

Equation 6.63 couples the response of individual master nodes. The principle of
virtual work is applied to generate the following equations which define the accelera-
tions of the master nodes in response to the penetration forces.

(my+ Z migl)an = Zf]s (6.64)
S S

where the summation is over all slave nodes S in contact with master node I.

The above expression represents a set of uncoupled equations; one for each master
node. The mass and force contributions to the above assembly for a given slave node

92

~—




are as {ollows:

myg = (5 = )3 = 1)ms (6.65)
mye = (3 + 65 — 1)ms (6.66)
My, = (%+£)(%+7))ms (6.67)
My, = (% - {;(% 4+ n)mg (6.68)
fi.= (3 -G~ (6.69)
f2, = (3 + OG- (6.70)
fis = (3 4+ O + ) (6.71)
foo = (3 -6 +0)f, (6.72)

After assembling and solving Equations 6.64 for the master accelerations, each
slave response is interpolated via Equation 6.63. Note that this slave response restricts
the motion induced by the penetration force given in Equation 6.62. Therefore, the
acceleration correction for a slave node is given by

f
p -
a,5 = @ps — T . (6(3)
‘ mg
In the absence of friction. the corrected nodal acceleration to Equation 6.16 for both
master and slave nodes then is given by

a=a-a,. (6.74)
6.2.6 Friction

Friction resists the relative tangential motion of the contacting slave nodes. The
relative predicted tangential velocity of the slave node with respect to the master
surface is calculated as follows:

vesYs - (G OG-

- (% + {)(1, - )V,

’ - G HOG )
- (3= O + 1)V (6.75)
Ve =V, = (novin (6.76)

The above velocity is decomposed into a magnitude and unit direction vector as follows:

e v = VYV (6.77)
i




s = - ~ (6.78)

As with the penetration force 6.62, we define the tangential contact force as a
fraction of the force which must be applied to the slave node to cancel its relative
tangential velocity. This force is given by

Amst, N
[y oo 2l (6.79)
At

where the minus sign above reflects that this foree would be applied in the direction of

s. but opposing the motion.

PRONTO currently supports thiee options for friction: no friction, Coulomb fric-
tion with a constant coeflicient of friction, or the velocity-dependent friction law found
in HONDO 11 {32]. The coeflicient of friction can be expressed by

o= flee + (Jo — flo)e” T (6.80)

wnere jig and jige are the low- and high-velocity friction coeflicients, respectively, and
v is a decay constant. Cleirly, if 5 equals zero, the coeflicient of friction is the constant

I

jio. Futhermore if jig is also equal to zero, the surface will be frictionless.

The magmtude of the tangential force exerted by the master surface on a slave

node cannot exceed the maximum friction force. This constraint is expressed as

I l; min(pfo 1 fe0) (6.81)

where f, s the magnitade of the normal contact force as given helow.
[, msa,sn (6.82)
Substitnting FEquations 6.82 and 6.79 into (.81, then eliminating the nodal mass yields

Uy Ao
a, == -—- Hl]l](/la,,s - N, “"—‘*) (683)

oy JAY!
Applying this force to the slave node and balancing forces to the master nodes,
then dividing by the appropriate nodal mass yields the following expressions for the

tangential accelerations to these respective nodes.

a.y a,s (6.84)

. . a,ms .

S S R T Bt (6.85)
ny
a,ms

an = (L&) s (6.86)
ma

) . a,mg .

a3 - (3 f)(§ b n)-—--s (6.87)
na
a,m;

g = (3= O )T (6.88)
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Finally, by adding the above tangential accelerations to Equation 6.74, the cor-
rected total acceleration of each contact node is expressed in general form for both
master and slave nodes by

a=a-+a,+a, (689)




7. BOUNDARY CONDITIONS

PRONTO supports several types of boundary conditions. In this chapter, we
describe how these are implemented in the program. In Chapter 8, we discuss the
initialization and time-stepping algorithm including when these various boundary con-
ditions are applied.

7.1 Kinematic Boundary Conditions

The kinematic boundary conditions described below are all accomplished by al-
tering the accelerations of the nodal points. All of the kinematic boundary conditions
apply to nodal point sets.

7.1.1 No Displacement Constraint

A no displacement constraint is accomplished by setting the acceleration of each

selected node to zero.

Note: Velocity or acceleration constraints prescribed on a node will override a no
displacement constraint.

7.1.2 Prescribed Velocity Constraint

A prescribed velocity constraint is accomplished by altering the nodal point accel-
eration such that when the accelerations are integrated once, they provide the proper
value of the nodal velocity. The nodal value of acceleration for the time step is calcu-
lated by the program as

4'(? ar — T ) e
a, = —(—tj—Al—;——-t— . (7.1)
The velocity at the end of the time step is computed by
vipar = s f(E+ At) (7'2)

where s is the scale factor and f(t) is the history function defined by the user. In
Equation 7.1, the value of velocity at the beginning of the time increment, v, is the
value computed by Equation 7.2 at the previous iime increment.

Note: A prescribed acceleration constraint on a node will override a prescribed

velocity constraint.
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7.1.3 Prescribed Acceleration Ceustraint

A prescribed acceleration constraint is applied by the program by setting the nodal
acceleration during the time increment to the value given by

a; = sf(t) (73)
where s is the scale factor and f(t) is the history function defined by the user.

Note: A prescribed acceleration constraint will override any other kinematic con-
straint on the same node.

7.2 Traction Boundary Conditions

he boundary conditions described below apply external forces to selected nodes.
The pressure and nonreflecting boundary conditions deal with element side sets, while
the nodal {crce boundary condition applics 1o n:dal point sets.

7.2.1 Pressure

The set of consistent nodal point forces arising from pressures distributed over an
element side are defined via the vrinciple of virtual work by

St fur = 5?/.‘1/¢>1(—-Pn;)dA | (7.4)
S

where the range of the lowercase subscripts is 3, while the range of uppercase subscripts
1s 4.

Since the virtual displacements arc arbitrary, they may be eliminated to yield:

fii = ——/d\lpn,;dA (7.5)
S

The most general pressure distribution we allow is mapped from nodal point pressure
values via the isoparametric shape functions. The resulting expression for the consistent
nodal forces is

fir = “]’J/d)ld’.lnidA . (7.6)
$

For the eight-node uniform stress element used in PRONTO, ¢; is given by

¢ =381 + 2Air + inhar + €Ty (7.7)
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The above integral involves 64 terms. Only terms with even powers of both £ and
n are nonzero. Of the the remaining 16 terms, 4 vanish due to the properties of the
alternator. The final 12 terms are given below.

1 1
L D 1 1

fir = —pieiTimTen / . / (1Z; + 26A1s + inhar + €nDy)
B

[SIEE]

(A%, + 2eA1, + InAos + E915)
(%A1M+77FM) (%AQN‘*"’]FN)’G’{({"] (7]2)

Integrating yields

fir = = GpreirTimTin (212 + %Au/\u + %/\211\2.7 + %FJFJ) AmAan
+(3SrAw + 2A0Ts + E0iAss + AT ) AT
+(3S7A0 + ATy + 300Aw + SA0TS) TaAgn ] (7.13)

The above expression may be evaluated to yield the following formula for calculating
the nodal forces:

1 ’1,' 1 2

Fol o 2

2 = 72{(1313 - I'jl)(-TM - Tpa) + (-sz - Tj4)(fﬂk3 - Ikl)]
13

+ ?15[(“’12 — ri ks = Tra) + (2j3 — Tia)(Th1 — k)] s + P2

(7.14)

+ iz = zia)(Ths = Tre) + (253 = 252)(Ths — Tha))

where {7,7,k} form a negative permutation. Note that a positive pressure gives forces
directea inward.

The nodal values for the pressure are calculated using the user-supplied scale factor
and time history function. The values are calculated at the beginning of the time step.

The application of the pressure boundary conditions is fully vectorized. Element
sides are processed in vector blocks using the vector block scratch element space. After
the consistent nodal point forces are calculated for a block of element sides, they are
accumulated into the global nodal force array.
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7.2.2 Moving Pressures

The moving pressure boundary condition implemented in PRONTO represents
a relatively simple way of incorporating both a spatial and temporal distribution of
pressure foading on a surface. The implementation described here is intended for blast
type loading on a surface where the blast originates from some point defined by the
coordinates (2¢,yo, z0) and propagates along the surface. We assume that the surface
1s flat and the distance {rom any point on the surface to point (zg,y0,20) 1s given by
d. Then the pressure at any point is written as

p(r,d) = are™®" (7.15)

where 7 is the time measured from the arrival of the pressure wave at the point and a
and b are functions of distance, which are defined below. If w is the propagation speed

of the pressure wave along the surface, then 7 is given by

d
w

where £ s the pressure initiation time at the point (zg,yo,20). The time at which

Fauation 7.15 vives ; : e
Squation 7.195 gives a maximum for the pressure is

]
Tmar = Z)‘ (f.]f)
which we refer to as the rise time. The peak pressure obtained at this time is
a _
Prmazr = TL . (718)
)

We allow the user to define two functions of distance from the point (zq,yo, z0) which
desceribe the behavior of the pressure wave. The first function defines the peak pressure
asz a function of distance while the second describes the rise time as a function of

distance. Using Equations 7.17 and  7.18, we can wrile the parameters a and b as.

functions of distance

fild I
fa(d) fa(d)

The user can define the functions in any manner he sees fit, which allows for a quite

~—

ald) = et b(d) = (7.19)

general spectfication of the moving pressure wave. If the user inputs a zero value for the
propagation speed, w, the code assumes that the pressure is applied instantaneously
along the surface (i.e., this corresponds to an infinite propagation speed). If the as-
sumed pressure description given by Equation 7.15 is not suitable, it is a simple task
to change this description to some other two parameter functional forin and alter the

code accordingly.
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7.2.3 Nodal Forces

Nodal point external forces are applied by calculating the magnitude of the force
determined by the user supplied scale factor and time history function. The time
history function is evaluated at the beginning of the time step.

7.3 Nonreflecting Boundaries

In a number of geotechnical applications, it is desirable to model an infinite or
semi-infinite space. In these applications, waves are transmitted outward from some
disturbance and are absorbed in the far field. PRONTO contains a boundary condition
specification which will absorb waves and suppress any reflection back into the interior
mesh. This allows for a much smaller mesh and a significant reduction in the nuinber

of degrees of freedom in the problem.

The absorbing or nonreflecting boundary which is implemented in the code was
proposed by Lysmer and Kuhlemeyer [33], and discussed in detail by Cohen and Jen-
nings [34]. The exterior infinite region is replaced by an energy absorbing boundary
condition. The basic idea is to apply boundary tractions which will exactly cancel the
stresses which are generated at the free surface. On this boundary surface, tractions

are applied of the form

Tn = /"/’P{ln (720)
and
T, = pVii (7.21)
where:
o, - normal stress applied to the boundary
7, = shear stress applied to the boundary
1, = velocity component normal to the boundary
u, = velocity component tangential to the boundary
p = current density of the material at the boundary
V, = current s-wave velocity in the material at the boundary
V, = current p-wave velocity in the material at the boundary

The wave speeds required in Equations 7.20 and 7.21 are calculated using the effective
shear and dilatational modul determined in Section 3.4.

The tractions given by Equations 7.20 and 7.21 are used with the consistent nodal
forces which were derived in Section 7.2.1. The normal and tangential nodal velocities
are determined for the four local nodes of the element side to determine the correct
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tractions. These are used in Equation 7.14 for both the normal and shear components ,"“)
to give the proper consistent nodal point forces for the absorbing boundary. o

The application of the nonreflecting boundary condition is vectorized in a manner
similar to the pressure boundary condition. The effective moduli required for the wave
speed determinations in Equations 7.20 and 7.21 are computed during the main element
loop and stored for elements having this boundary condition.




8. INITIALIZATION AND TIME-STEPPING
ALGORITHM

8.1 1Initialization

The user defines a mechanics problem by specifying material properties, body
geometry, initial conditions, tractions, and kinematic constraints. PRONTO does an
extensive amount of data checking to try to insure that the user has defined a valid me-
chanics problem. These checks range from mundane (e.g., Are positive mass densities
provided for the materials?) to more subtle (e.g., Are all the contact surfaces simply
connected?). We do not guarantee that PRONTO will always detect bad data, but
experience has shown that it is usually smarter than both the users and the authors.

By “initialization” we mean the calculations which must be performed and the data
structures which must be set up before entering the time-stepping loop. There are two
initialization processes in PRONTO. The first has to do with setting up the initial data
structures according to user specifications. This is all done in the INIT routine which is
called from the main program. The initial displacements and velocities are first set to
zero. Then the initial velocities defined by the user are set. The stresses and internal
state variables also are initialized to zero. The internal state variables are subsequently
reset {o the appropriate initial values for the respective material model, if necessary.
Construction of surface data structures and the initial tracking of the contact surfaces

are also performed within the INIT routine.

The second, and more subtle, initialization which must be performed concerns the
resolution of the initial velocity field defined by the user with the kinematic constraints.
A pseudo-time step is performed to force the initial velocity field to be kinematically
compliant. It is important to enforce the initial constraints before entering the element
processing loop in order to allow the shock viscosity (quadratic bulk viscosity) to

respond.

To illustrate the necessity of this operation, consider the case of a bar striking a
rigid wall at some nonzero initial velocity. The user defines a rigid surface and assigns
all of the material in the bar the same initial velocity towards the wall. But the nodes
initially in contact with the wall would then violate the rigid surface constraints. To
restore kinematic compliance, the initial velocity of these nodes would have to be reset
to zero. This induces a high initial strain rate in the first row of elements.

The pseudo-time step is performed within the SOLVE routine prior to ¢ntering the

103




time step loop. It uses the initial time increment determined in the INIT routine during g
the element mass calculations. The algorithm proceeds as follows:

1. Set the pseudo-time accelerations equ>a1 to the trial velocities divided by the initial
time increment. Then set the velocities to zero.

o

. Predict a new configuration based on these pseudo-time accelerations.

3. Calculate acceleration corrections which enforce all kinematic constraints, except
1 prescribed accelerations.

: 4. Reset the initial velocities equal to the corrected pseudo-time accelerations mul-
tiplied by the initial time increment, and reset (i current coordinates to the
original configuration. The initial velocity field is now kinematically compliant.

We translate the trial velocities to pseudo-time accelerations strictly for algorith-
mic convenience. All kinematic constraints are enforced by PRONTO via accelerations.
Therefore, the pseudo-time accelerations can use the same code as the main time step
loop to enforce constraints.

PRONTO next enters the time step loop. The initial time step is performed the

same way as all subsequent steps, except that the constitulive state is not updated! (
8.2 Time Step Loop
The order of operations within the time step loop is crucial to ensuring correct
results. PRONTO’s time-stepping algorithm proceeds in the following order:
1. Assemble the internal forces from the following:
(a) Calculate element strain rates.
(b) Advance the constitutive state .o the end of the time step.
(¢) Calculate force contributions Juec to stress divergence, artificial viscosity,
and hourglass resistance. Determine the new stable time increment.
{

o

Apply external loads: pressures, nonreflecting boundaries, and nodal forces.

3. Calculate accelerations and predict the configuration at the end of the time step
ignoring kinematic constraints. This predicted configuration will be used in the
contact and rigid surface routines to determine the corrections which must be
made to the accelsrations to bring the surfaces back into compliance.
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4. Apply kinematic constraints by altering the accelerations to satisfy prescribed:
displacement, velocity, and acceleration.

J 5. Enforce rigid surface and contact surface constraints by altering the accelerations,
f without disturbing the consiraints enforced above.

6. Write output, if timely.

7. Integrate the velocities and displacements forward using the compliant accelera-
tions. Update the current spatial coordinates.

8. Update the current time and go back to step 1 if more time is required. Otherwise,
exit the time step loop.

Most of the computation time in PRONTO occurs in step 1. Elements are pro-
cessed in material and vector blocks during this phase. See Appendix B for further
description of this process.
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9. NUMERICAL EXAMPLES

In this chapter we present two representative example problems which demonstrate
many of the features found in PRONTO 3D. In addition, all the example problems
presented in the PRONTO 2D [1] manual were duplicated using the three-dimensional
code.

9.1 Sphere Impact

This example problem is intended to demonstrate the robust nature of the contact
surface algorithms described in Chapter 6, as well as the extremely large deformations
and distortions which the uniform strain hexahedron can perform. Figure 9.1 shows
a lcm thick plate which is made of rolled homogeneous armor (RHA). The plate is
impacted by a sphere of radius 2cm which is made of Staballoy. Table 9.1 lists
the clastic/plastic combined hardening material properties used in the analysis. The
impact velocity 1s 1000 m/sec at an angle of attack of 30 degrees.

Table 9.1. Sphere Impact Problem Material Properties

. | RHA Staballoy
Density 7800 kg/m3 | 18,620 kg/m?
Young’s Modulus 206.8 Gpa 195.8 Cra
Poisson’s Ratio 0.3 0.203
Yield Stress 1220 Mpa 1036 Mpa
Hardening Modulus | 1220 Mpa 1036 Mpa
Beta 0.5 0.5

There are 9052 elements and 10897 nodes in the mesh. The problem ran for 94.4
cpu seconds on a CRAY X-MP 4/16 under CTSS with CFTLIB. The total number of

time steps was 411; this yields a value of 25.4 microseconds per element cycle.

Figure 9.2 shows a sequence of four diflerent times during the impact event. The
analysis was run to a time of 8.25 microseconds, at which time an element turned
inside out and the code stopped. This represents the limit that the Lagrangian code
can continue to model the event. Note the severe distortion in the elements which
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Figure 9.1. Sphere Impact Problem Mesh
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form the impact crater. This distortion poses a tremendous challenge to the contact SN
surface algorithm because element faces along the edge of the crater become extremely )
warped. Figure 9.3 shows views of the formation of the impact crater at the same four

times as in Figure 9.2.

Figure 9.4 shows the PRONTO 3D commands used to define this problem. .
[ / T\
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Figure 9.2. Time Sequence from the Sphere Impact Problem
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Figure 9.3. Impact Crater Formation during the Sphere Impact Problem

109




o~

TITLE
30 FT CASK DROP, IMPACT VELOCITY = 43.95 FPS
TERMINATION TIME = 5.E-3
PLOT TIME = .2E-3 -
QUTPUT TIME = .01E-3 “
PLOT NODAL = DISPLACEMENT
PLOT ELEMENT = VONMISES
PLOT STATE = EQPS
CONTACT SURFACE = 202,201

CONTACT SURFACE = 102,101
CONTACT SURFACE = 88,89,0.,1,
NO DISPLACEMENT Z = 1

NO DISPLACEMENT X = 3

NO DISPLACEMENT ¥ = 3

NGO DISPLACEMENT Z = 3

INITIAL VELOCITY MATERIAL
INITIAL VELOCITY MATERIAL 2, 166.7 , -500.3 , O.

INITIAL VELOCITY MATERIAL 3, 166.7 , -500.3 , O.

MATERIAL 1 = ELASTIC PLASTIC , 7.366-4 $ STEEL {
YOUNGS MODULUS = 29.E6 , PDISSONS RATIO = .33333

YIELD STRESS = 40.E3 , HARDENING MODULUS = 40.E3 , BETA = 1.

END

MATERIAL 2 = ELASTIC PLASTIC , 10.53-4 $ LEAD

YOUNGS MODULUS = 2.E6 , POISSONS RATIO = .44

YIELD STRESS = 2000. , HARDENING MODULUS = 0. , BETA = 1.

£ND

MATERIAL 3 = ELASTIC PLASTIC , 7.366-4 $ STEEL

YOUNGS MODULUS = 29.E6 , POISSONS RATIO = .33333

YIELD STRESS = 40.E3 , HARDENING MODULUS = 40.E3 , BETA = 1.

1, 166.7 , -500.3 , O.

1]

END

MATERIAL 4 = ELASTIC , 1. $ RIGID PLATE

YOUNGS MODULUS = 1000. , POISSONS RATIO = 0.

END (
EXIT N

Figure 9.4. PRONTO 3D Input Commands for the Sphere Impact Problem




9.2 Cask Impact

In this example problem a generic waste transportation cask is dropped from 30
feet onto a rigid r’l. The impact velocity is 43.95 feet per second. The angle of impact
is such that the center of gravity of the cask is over the corner where the impact occurs.
The mesh of the cask used in the analysis is shown in Figure 9.5. The cask has 0.5
inch thick steel inner and outer liners with 3.5 inches of lead shielding between them.
Table 9.2 lists the elastic/plastic material properties used in the analysis.

Table 9.2. Cask Impact Problem Material Properties

Steel Lead
Density 7.366x10~¢ lb/in/sec? | 10.53x10™* 1b/in/sec?
Young’s Modulus 29x10° psi 2x10° psi
Poisson’s Ratio .33 44
Yield Stress 40,0C9 psi 2,000 psi
Hardening Modulus 40,900 ps: 0
Beta . 1. 1.

The analysis was run to a total time of 5 milliseconds. Figure 9.6 shows the total
kinetic energy in the system. Rebound occurs at 4.6 wiilliseconds, at which time the
deformations in the cask are the largest. The configuration at that time is shown in
Figure 9.7. The deformations in this analysis are not extremely large, as can be seen
in the figure. Nevertheless, the materials in the cask, particularly the lead shielding,
develop large plastic strains as shown in Figure 9.8.

This problem is included because it entails a large amount of contact data. A
contact surface is defined between the liners and the shielding, and between the outer
liner and the rail. The three contact surfaces make this a highly contact intensive
analysis. The problem took 10932 time steps and used a total of 3732 cpu seconds on a
CRAY X-MP 4/16 under CTSS with CFTLIB. This gives a value of 32.7 microseconds
of cpu time per element cycle. Comparing this number with the value of 25.4 for the
previous problem, shows that the intensive contact calculations for this problem carry
only a 29 percent penalty.

Figure 9.9 shows the PRONTO 3D commands used ‘¢ define this problem.
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TITLE )
STEEL SPHERE IMPACTING STEEL PLATE AT 1000 M/SEC - ANGLE = 30 DEGREES
| TERMINATION TIME = 8.25E-6
PLOT TIME = .25E-6
QUTPUT TIME = .25E-6
PLOT ELEMENT = VONMISES
PLOT STATE = EQPS
PLOT NODAL = DISPL
CONTACT SURFACE = 100 , 89
INITIAL VELOCITY MATERIAL = 1 , 500. , -866. , O.
MATERIAL 2 = ELASTIC PLASTIC , 7800. $ RHA
YOUNGS MODULUS = 206.8ES
POISSONS RATIO= .3
YIELD STRESS = 1220.E6

HARDENING MODULUS = 1220.E6 N

[

BETA = .5 e
END

MATERIAL 1 = ELASTIC PLASTIC , 18620. $ Staballoy
YOUNGS MODULUS = 195.8E9
POISSONS RATIO= .203
YIELD STRESS = 1036.E6
HARDENING MODULUS = 1036.E6

BETA = .5
END
NO DISPLACEMENT Y = 300
NO DISPLACEMENT Z = 333
EXIT
Figure 9.9. PRONTO 3D Input Commands for the Cask Impact Problem f"
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A. PRONTO 3D USERS INSTRUCTIONS

Listed below are all the keywozds supported by the PRONTO 3D command lan-
guage. The uppercase letters represent the minimum abbreviation of each word.

0 ~1 D U b W N

—
= =]

12.

[SARN

v
H

®

[CCT DO SG T SO (I ]
for]

o

30.
31

w39,
33,

TITle
TERMination Tlme
OUTput Time

REAd REStart

WRIte REStart

PLOT Tlme

PLOT NODal

PLOT ELement

PLOT STate

PLOT Hlstory

TIme STep SCale

BULK VIScosity
HOURglass STIF{ening
EXIT

FUNCtion

NO DlSplacement
PREScribed VELocity
PREScribed ACCeleration
PREScribed FORce
INITial VELocity NODeset
INITial VELocity MATerial
INITial VELocity ANGular
PRESsure

MOVing PREssure

SiLent BC

RIGid SURface

CONtact SURface

M ATerial

EQuation OF STate
"DETonation POint
*BURN CONstant
fi_DELete_MATerial .
DEATh . "




The user presents input data to PRONTO in a keyword driven, free field format
command language. The command lines may be in any order the user finds conve-
nient. Each command is described below in the order in which they are listed above.
The boldface words are the command keywords. The words following each command
represent input parameters which the user should specify. Default values are defined
where appropriate. Example command files are shown in Chapter 9.

The free field parser allows the user to delimit entries by one or more spaces, a
comima, or an equals sign. Consecutive delimiters define a null (defaulted) field. We
suggest using spaces between keywords, an equals sign to separate the command from
the parameter list, and commas between values. Material data is input via material
cues; an equal sign is helpful to separate each cue from its associated value. See the

examples following command 28.

A dollar sign allows the user to place a commert on any line; anything following a
dollar sign on an input line is ignored. An asterisk at the end of an input line indicates
that the line is continued on the next line. This input style is described in greater

detail in [5).

1. TITle

enter a suitable title on the next line

)

2. TERMination TIme

tend time to terminate the analysis

3. OUTput Tlme, tout
tout time interval at which to print output
(default = tend/200, where tend is defined via command 2)

4, REAd REStart, restmm
restm time at which restart is to begin

5. WRIte REStart, trsdmp
trsdimp time interval at which to write restart dump files

(default is to write no restart files)

6. PLOT TIme, tplot, tstart, tpend
tplot time interval al which to write. EXODUS output

(default = (tpend-tstart)/10) .0 =
‘ tstart  time to start wrmng data EXODUS output
St , - (default = 0)
.+ .tpend time to stop wrxtmg data EXODUS output
- ' _'(default ) m;




‘ 7.
DISPLACEMENT -
VELOCITY
ACCELERATION -
REACTION
a MASS

PLOT NODal, nodal variable 1, nodal variable 2, ...
allowable nodal variable names (can be abbreviated to 3 letters):

displacements ( DISPLX, DISPLY, DISPLZ )

- velocities ( VELX, VELY, VELZ )

accelerations ( ACCLX, ACCLY, ACCLZ )

- reactions ( RX, RY,RZ)
- lumped mass ( MASS )

The nodal variables written to the EXODUS file by default are the displacements,

the velocities, and the accelerations.

The displacements are always written to the

EXODUS file. The names in parentheses are the alphanumeric names assigned to the

variables on the EXODUS file.

8. PLOT ELement, element variable 1, element variable 2, .
allowable element variable names:

STRESS

ENERGY
STRAIN

RATEDFM

STRETCH

ROTATION

DENSITY
PRESSURE
VONMISES

NI AN
DU LAY

- stresses ( SIGXX, SIGYY, SIGZZ,

TAUXY, TAUYZ, TAUZX )

- internal energy density ( ENERGY )
- total strains ( EPSXX, EPSYY, EPSZZ,

EPSXY, EPSYZ, EPSZX )

- deformation rates ( DXX, DYY, DZZ,

DXY, DYZ,DZX)

- left stretches ( STRECHXX, STRECHYY,

STRECHZZ, STRECHXY,
STRECHYZ, STRECHZX )
- rotations ( R11, R21, R31,
R2i, R22, R23,
R31, R32, R33 )
- current density ( DENSITY )
- pressure ( PRESSURE )
- vonMises equivalent stress ( VONMISES )
Lulk sity pressure ( BULKQ )

- Juik VIO\.COAbJ pirLoouss

The element variables written to the EXODUS file by default are the strésses and
the energy density. The names in parentheses are the alphanumeric names assigned to
the variables on the EXODUS fie. :

" The user can ask for any of the internal state variables to be wri
Table A 1 lists the mterna.l state varxable namqs for

EXODUS fie.

9. PLOT STate, state variable 1, state variable 2,...




model. See Chapter 4 for definitions of these variables. There are no state variables : (
written to the EXODUS file by default. -

Table A.1. Internal State Variables Available for Each Material Model

MATERIAL ALLOWABLE NAMES | B
ELASTIC " (no internal state variables) {:
ELASTIC PLASTIC EQPS RADIUS ALPHA1ll ALPHA22 T
ALPHA33 ALPHA12 ALPHA23 ALPHA3I
VISCOPLASTIC EQPS SIGYLD
DAMAGE EQPS DAMAGE EVMAX FRAGSIZE
CRKDENS
HYDRO (no internal state variables)
LOW DEN FOAM PAIR
SOIL N FOAM EVMAX  EVFRAC EV NUM
EF HYDRODYNAMIC EQPS RADIUS ALPHAl1ll ALPHA22
ALPHA33 ALPHA12 ALPHA23 ALPHA3I
WARNING: Indiscriminate usc of commands 6, 7, 8, and 9 can create eztremely
large EXODUS files!
e
10. PLOT Hlstory, VARIABLE = variable name, COORD = ¢, yo, =0, : e

NAME = user name, COMP — comp name
VARIABLE keyword which defines the vanable to be placed on the data

base. Can be a nodal, an element or a state variable name.
variable name any valid nodal, element, or state variable name

For nodal variables, the valid names (which may be
abbreviated to three characters) are:

DISPLACMENT

VELOCITY

ACCELERATION

REACTION

MASS : ,
For element variables the vahd names (w}nch may be
abbreviated to four character:) are: ‘

STRESS | “
STRAIN . e
STRECH T —
RATEDFM - 7%
~ .ENERGY " = -
.+ DENSITY




COORD

Lo, Yo, <0

NAME

user name

COMP

comp name

11. TImre STep SCale, scft, ssft

scft

scft

bl

b2

12. BULK VIScosity, bl, b2 - .

PRESSURE

VONMISES

BULKQ
For state variable names, the valid names are list ed in
Table A.1.
keyword to define the position of the history point
coordinates of the history point (3 data values). PRONTO
will find the nearest node or element to this position.

keyword for naming the output variable

user supplied history output name. Must be between one
and six characters. If the component specification is omitted
for a vector or tensor variable, PRONTO will construct
names for all the components by using the supplied name
and appending the vector or tensor component designations.
The user name must be unique for each history point
defined. Futhermore, the user name must not conflict with
the nodal, element, or global names that PRONTO defines
(e.g., NAME=SIG will conflict with the element stresses,
while NAME=SIGA. will be unique).

optional keyword that specifies the component of the vector
or tensor. This option is not allowed for scalar variables
(e.g. PRESSUR.E); this includes all state variables. If you
do not specifv a component for a vector or tensor variable,
PRONTO will create history variables for all components.

Vector or tensor component specification
For vectors: X, Y, or Z
For tensors: XX, YY, ZZ, XY, YZ, or ZX

scale factor to be applied to the internally ca.lculated global SRR
time increment ‘ MR
(default=1.0) . e

scale factor to be applxed t6 the mternally ca]culated txme

step for strain softening e]ements
(default=1.0) : :

lmear bulk vnscosxty coeﬂicxent
(default =.06):" . oo b e |
‘quadratic bulk- vxscosxty coefﬁc:ent
(default :1 2).




13. HOURglass STIFfening, hgstiff
hgstiff hourglass stiffening factor:

(default=.05)

14. EXIT

terminates command input; remaining lines in command file are ignored

15. FUNC4ion, function id
function id  any nonzero integer by which you wish to identify this

function. Each function must have a unique id.

After a FUNCTION command you must enter a list of points defining the func-
tion. Each abscissa-ordinate pair is input on a separate line immediately- following
the command line. The list is terminated by a line containing the END command, as

shown below.

x]af(‘rl)
I'Zsf(‘"r))

Tn, f(-T'n)
END

The abscissae of a function mus! increase monotonically. PRONTO linearly in-

terpolates between function points, but does nof extrapolate. If the argument to the

function falls outside of the user specified range, PRONTO ignores the boundary con-

dition or load associated with that function. This means that a boundary condition

can turn on or ofl at a specific time .

16. NO DISplacement, direction, node set id
direction X,Y,orZ
must match a node set on the GENESIS file = . -

node set id
PRONTO enforces zero displacement in the specxﬁed direction for each -
node in this set.

17. PREScribed VELocity, direction, node set id, function id, scale factor,

' Cay Cyy Cay Ty Ny, My _
X, Y, 7, RADIAL, CYLINDRICAL, NORMAL or .
SPHERICAL ‘

must maich a node set on the GENESIS ﬁle : ‘j

must match a function deﬁned v:a command 15

'».\.{‘ or
PSR

direction

node set id

function 1d
scale factor  scales the functxon value

(default 1. 0)

E I
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‘ . Cay Cyy C: center point coordinates, defined only for options: RADIAL,
N CYLINDRICAL, or SPHERICAL
| Ny Ny, N, axis or normal vector, defined only for opticns: RADIAL,

CYLINDRICAL, or NORMAL

PRONTO sets the appropriate component of velocity of each node in this
set to the product of the time function value and the scale factor. The
RADIAL option defines the radial velocity component with respect to a
cylindrical coordinates system defined by the center point and axis vector.
The CYLINDRICAL option defines the tangential (counterclockwise)
velocity with respect to this cylindrical coordina’c system. The NORMAL
option simply defines a Cartesian component in a direction which is not
aligned with one of the coordinate axes. Finally, the SPHERICAL option
defines the radial velocity with respect to a spherical coordinate system.

18. PREScribed ACCeleration, direction, node set id, function id, scale factor

direction X.Y.or?7
node set id must match a node set on the GENESIS file
function id must match a function defined via command 15

scale factor scales the function value
(default=1.0)

PRONTO sets the specified component of acceleration of each node in this
set to the product of the time function value and the scale factor.

/’\\.

19. PREScribed FORce, direction. node set id. function id, scale factor.
CriCyuCoe Npi My M,
direction X, Y. Z. RADIAL. CYLINDRICAL, NORMAL, or
SPHERICAL
node set 1d must match a node set on the GENESIS file
function id must match a function defined via command 15
scale factor  scales the function value

(default=1.0)

Cay Cyy Cs center point coordinates, defined only for optidnS: RADIAL,‘
CYLINDRICAL, or SPHERICAL
Ny My, N: axis or normal vector, defined only for options: RADIAL

CYLINDRICAL, or NORMAL
_, PRONTO applies the apnropriate force component to each node in this set
C'\" to the product of the time function value and the scale factor. .See o L
o command 17 for a description of the component Optxonq.

Fi 20. INITial VELocity NODeset, node set xd, z,,v,,,z.‘ A
S ' node set id  must match a node sct-on lhc (‘ENESIS ﬁl

velocity vector

Vgy Uy, Vs



A
PRONTO initializes each component of the velocity of each node in this set

to the specified value. '\)

21. INITial VELocity MATerial, material id. v , vy, v;
material 1d must match an element block on the GENESIS file

Uy Uys Uz velocity vector
PRONTO initializes each component of the velocity of each node connected

to the specified material block to the specified value. )

13
o

INITial VELocity ANGular, material id, w, ¢z,¢,. ¢y nz 0y 10
material 1d must match an element block on the GENESIS file

w angular velocity (radians per second)
Cr.Cya s center point coordinates
Nay My N2 axis vector

PRONTO initializes the velocity of cach node connected to the specified
material block to correspond to the given angular velocity field. The
velocity vector for each node is calculated by multiplying the cross-product
of the normalized axis and the position vector from the center point to the

node by the angular velocity.

23. PRESsure. side set id. function id, scale factor
side set 1d must match a side set on the GENESIS file

function 1d must match a function defined via command 15
scale factor  scales the function value

(default=1.0)
PRONTO applies a pressure each to the product of the time function value
and the scale factor to cach element side in this set. The calculated pressure
value at cach side node is multiplied by its side set scale factor as read from
the G~ <ESIS file. A positive pressure is directed inward to the element.

24. MOVing PREssure, side set id, ¢,, 0. c.. peak id, rise id, (', 1o, scale factor

side set 1d must match a side set on the GENESIS file
CreCyy Cs center point coordinates

peak id must match a function defined via command 15
rise id must match a function defined via command 15
C, propagation speed

o arrival time

scale factor  scales the peak function value

(default=1.0)

PRONTO calculates the pressure at each node in the side set via: ..
Equation 7.15. A positive pressure is directed inward to the ele'xvuént._ ‘
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SILent BC, side set id
side set id must match a side set on the GENESIS file
A nonreflecting boundary condition is applied to each element side in this
set.

26.  RIGid SURface, side set id, e, e 0., na,ny,n., p
side set id must match a side set on the GENESIS file

CriCys Cs center point coordinates
Ny My s outward normal vector
T static coetlicient of friction

(default = 0.)

A rigid surface condition is enforced for all nodes in this side set.

27, CONtact SURface. side 1 1d. side 2 1d, o, 3, j11, 9

side 1ad must match a side set on the GENESIS file
side 2 1d must match a side set on the GENESIS file
o static coeflicient of friction

(default = 0.)
i kinematic partition factor

(defanlt - 0.5)
iy hirh velocity coeflicient of friction

(default = 0.)
4 velocity decay coefhicient

A contact condition is enforced between the two surfaces defined by the
respective side sets. The kinematic partition is a relative weighting of the
master slave relationship of the two surfaces. A value of zero implies that
the first surface (defined by side 1 1d) acts only as a master and the second
surface acts only as a slave. A value of one reverses these roles. The default
value (0.5) gives a symmetric treatment of the contact. If one surface is
much more massive than the other, this variable should be adjusted so that
it is treated as a master. By massive, we mean that the surface either has a

higher material density and/or a coarser mesh refinement.

28. MATerial, material id, model. p
material id must match an element block on the GENESIS file -

model valid material model name, the material models currently
supported in PRONTO 3D are:
ELASTIC
ELASTIC PLASTIC
VISCOPLASTIC =
DAMAGE
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HYDRO :
LOW DEN FOAM * )
SOIL N FOAMS

EP HYDRODYNAMIC

/" material density

Appropriate material data for the given material model must be entered immed:-
ately following the MATERJAL command line. The data is entered in a keyword-value
fashion: a cue followed by its assigned value. Each material type requires its own set
of material cues. The material cues can be entered in any order, and on any number

of input lines. An END statement is required to terminate the material data.

S

Listed below are the currently supported material models and. their required ma-

terial cues. Consult Chapter 4 for definitions of these parameters.

I ELASTIC YOUNGS MODULUS
POISSONS RATIO

2. ELASTIC FLASTIC YOUNGS MODULUS

POISSONS RATIO

YIELD STRESS

HARDENING MODULUS

BETA . N
3. VISCOPLASTIC YOUNGS MODULUS )

POISSONS RATIO

YIELD STRESS

HARDENING MODULUS

GAMMA

})
1. DAMACGE YOUNGS MODULUS

PCISSONS RATIO

YIELD STRESS

M

K

FRACTURE TOUGHNESS
5. HYDRO PRESSURE CUTOFF (positive in compression)

A valid equation of state must be defined for this model via command 29

6. LOW DEN FOAM YOUNGS MODULUS

A

B

C



’ NAIR
| PO
PHI
7. SOIL N FOAMS BULX MODULUS
TWO MU
o A0
Al
A2
PRESSURE CUTOFF (positive ia compression)
FUNCTION ID: if this value is zero, the original
bulk modulus is used. Otherwise, this must
match a function defined via command 15 which
~ defines pressure as a function of volume strain.
8. EP HYDRODYNAMIC YOUNGS MODULUS
POISSONS RATIO
YIELD STRESS
HARDENING MODULUS
BETA
PRESSURE CUTOFF (positive in compression)

A valid equation of state must be defined for this model via command 29.

/ : Examples of how the user might input the material data for the ELASTIC PLAS-
TIC model are given below. They illustrate several different styles. All three examples
vieid identical results as far as PRONTOQ is concerned. '

Example 1:
MATERIAL,1,ELASTIC PLASTIC,2.7E-3

HARDENING MODULUS = 30.E4

YOUNGS MODULUS = 30.E6
BETA = .5
PDISSONS RATID = .3

YIELD STRESS = 30.E3
END

‘Example 2:
MATERIAL,1,ELASTIC PLASTIC,2.7%- 3
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA

<:\  YIELD STRESS = 30.E3 HARDENING MODULUS = 3CG.E4
i : END S
Example 3:
, 1 MATERIAL,1, ELASTIC PLASTIC 2,7E-3
o YOUNGS MODULUS = 30 .E6 POISSONS RATIO -' .3 BETA
‘ : YIELD STRESS 30 E3 HARDENING MODULUS : 30 E4 END

]
(3]

—

-
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29. EQuation OF STate, material id, eos
material id  must match an element block on the GENESIS file

€eos valid equation of state model name, the EOS models
currently supported in PRONTO 3D are:
MG US-UP
MG POWER SERIES
JWL
IDEAL GAS

Appropriate material data for the given equation of state model must be entered
immediately following the EQUATION OF STATE command line. The data is entered
in a keyword-value fashion; a cue followed by its assigned value. Each model requires
its own set of material cues. The material cues can be entered in any order, and on

- any number of input lines. An END statement is required to terminate the material

data.

Listed below are the currently supported equation of state models and their re-
quired material cues. Consult Chapter 5 for definitions of these parameters.

1. MG US-UP -CO
S
GAMMA

2. MG POWER SERIES K0
K1
K2
GAMMA

3. JWL CD
A .
+ B .
OMEGA
R1 P
R2 TR
ENERGY v;f

4. IDEAL GAS GAMMA
S xSOUNDSPELD




30.

31.

Example:

MATERIAL,8,HYDRO,2. 7E<3
PRESSURE CUTOFF=-1.E9 $(note:
END

EQUATION OF STATE,8,MG US-UP
C0=5380 S=1.337 GAMMA=2 ‘
END

DETonation POint, material no, CzyCyyCzy to R
material id = material number of high exploswe to be detonated; must;'
match an element block on the GENESIS file ‘
CzyCyy Cz detonation point coordinates
to detonation time

BURN CCNstant, bs
bs high explosive burn constant
(default=2.5)

DELete MATerial, material id, deletion tifné ,
material id must match an element block on the GENESIS file
deletion time all elements in this materxal block are deactivated at thls
time

DEATh, material id, variable name, mode, level

material id  must match an element block on the GENESIS file

variable name the critical variable may be one of the following:
ENERGY .
VONMISES -

PRESSURE

SIGMAX Sl e

, a state variable for thxs model from Tab]e A 1
mode the criticality mode may be one of the followmg
’ MIN (minimum value) e o
~ MAX (maximum value) .
ABS (absolute(value)

. crmral va.lue




the critical varxab]e 1s used

For example, the command
DEATH = 3 , DAMAGE , MAX , .8

would delete elements within the material block mlh id 3in wluch the damage excecds
a value of 0.8. Note that PRONTO would msxsl that" thls matenal block uses the

DAMAGE model.

The user should be aware that it is poSsib]»e\'téideﬁne nénsensica] dzita ii_ylusing a
mode specification which is inappropriate for the critical variable. An example of this -
would be using the MIN specification with the VONMISES variable and a ncgatwc
level. o

f

Clare must be taken {o avoid deleling elements whzch have szdc boundary condzhons

5 o *

applied to them!
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B. STORAGE ALLOCATION FOR PRONTO 3D

B.1 Dimensioning Parameters and Variables

AT

Name Value Description

MFIELD 22 maximum number of fields per line of input

NEBLK 64 maximum length of a vector block

NELNS 8

NESNS 4

NHGM 4 number of hourglass shapes
3
6

number of local nodes per element
number of local nodes per element side

NSPC
NSYMM

number of spatial coordinate components
number of components in a symmetric tensor

Name Description
LCDATA length of contact surface data heap
LCTEMP length of contact surface scratch heap
MCONES maximum number of equation of state constants
MCONS maximum number of material constants

Lo NACCBC number of prescribed acceleration constraint conditions

‘ NANGV number of initial angular velocity specifications

NBCNOD number of node sets
NBCSID number of side sets
NCONT number of contact surface pairs
NDEATH number of adaptive element deletion specifications
NDETPT number of detonation points
NEMBLK number of material blocks
NFORCE number of prescribed nodal point force load conditions
NFUNC number of functions
NIVFLG number of initial velocity by node set specifications
NIVMAT number of initial velocity by material specifications
NMPBC number of moving pressure load conditions
NNLIST length of node set node list heap

(T\ NNOD number of nodes

+7 NODISP number of no displacement constraint conditions

NPRBC number of pressure load conditions
NQUIET number of nonreflecting boundary conditions
NRIGID number of rigid surfaces
NSLIST length of side set element list heap
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NSVLST number of user selected state variables

NTOTFV total number of user function data points

NTOTSV length of internal state variables heap

NUMEL number of elements

NVELBC number of prescribed velocity constraint conditions

B.2 Nodal Point Arrays

In the following descriptions, the term vector identifies an array which stores the
components of a Cartesian vector for each nodal point. The components are stored in
the obvious order: X, Y, Z.

Name Dimension Description

COORD (NNOD,NSPC) Original Coordinate Vector
CUR (NNOD,NSPC) Current Coordinate Vector
DISPL (NNOD,NSPC) Displacement Vector

VEL (NNOD,NSPC) Velocity Vector

ACCL (NNOD,NSPC) Acceleration Vector

FORCE (NNOD,NSPC) Force Vector

XMASS (NNOD) Lumped Mass

B.3 Elenient Arrays

In the following descriptions, the term fensor identifies an array which stores the
components of a Cartesian tensor for each element. For storage purposes, PRONTO
categorizes tensors as general or symmetric. PRONTO stores the components of a
G-tensor (general) as follows: XX, YX, ZX, XY, YY, ZY, XZ,YZ, ZZ. The
components of an S-tensor (symmetric) are stored: XX, YY, ZZ, XY, YZ, ZX.

Name Dimension Description

LINK (NELNS,NUMEL) Connectivity List; global node number of
each local node

SIG (NSYMM, NUMEL) Stress S-tensor

HGR (NSPC,NHGM,NUMEL) Hourglass Resistance Vectors; one vector
for each hourglass shape per element

ELMASS (NUMEL) Mass

STRECH (NSYMM,NUMEL) Stretch S-tensor

ROTATE (NSPC,NSPC,NUMEL) Rotation G-tensor

RHO (NUMEL) Current Density ‘ ‘

ENERGY (NUMEL) Internal Energy Density

VISPR (NUMEL) Bulk Viscosity Pressure
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SV (NTOTSV) Internal State Variables Heap

Each material block is allocated a specific portion of the SV array whosc structure
depends upon the material model. The pointer IPSV locates this portion which is
processed as SV(NINSV,NELB), where NINSV is the number of internal state variables
per element for this material model and NELB is the number of elements in this material
block. IPSV, NINSV, and NELB are defined for each material block within the KONMAT
data structure.

Each material block with a material model which references an equation of state is
also allocated a specific portion of the SV array for the storage of internal state variables
for the equation of state. The structure of this array depends upon the equation of
state. The pointer IPESV locates this portion which is processed as SVEOS(NESV,NELB),
where NESV is the number of internal state variables per element for this equation of
state and NELB is the number of elements in this material block. Note that if NESV is
zero the pointer is not used. IPESV, NESV, and NELB are defined for each material block
within the KONMAT data structure.

B.4 Optional Element Arrays

The following element arrays are only allocated if the user specifies certain options
for which they are required, or the user specifies them on the plotting data base.

Name Dimension Description

STRAIN (NSYMM,NUMEL) Strain S-tensor; allocated if the strain
flag KSFLG = 1

DOPT (NSYMM,NUMEL) Deformation Rate S-tensor; allocated if
the strain rate flag KSRFLG = 1

STATUS (NUMEL) Activity Status; allocated if the status

flag KSTAT = 1:
0 = inactive
1 = active

B.5 Material Block Arrays

All elements in PRONTO are processed in Malerial Blocks; contiguous groups of
elements which share a common material model and data. The KONMAT data structure
associates each material block with a material model.

The material model properties data structure PROP and equation of state properties
data structure EOSDAT for each material block are stored within a column of the DATMAT




array. This array is allocated rectangularly for convenience; the structure of each

column depends upon its model. The material model definition interface returns the
maximum number of material properties MCONS and equation of state properties MCONES
that will be required. PRONTO adds 2 words to MCONS and 1 word to MCONES to store

some reserved properties.

Each material block is assigned a deletion time. If the material block is to remain -
active, its deletion time is set beyond the termination time. A negative time indicates
that a material block has been deactivated.

Name Dimension Description
KONMAT (10,NEMBLK) Material Block Data Structure:
( 1,N) = material id
2,N) = material type
3,N) = first element in block
4,N) = last element in biock
5,N) = number of elements in block

TN TN SN NN

6,N) = number of internal state

variables
( 7,N) = IPSV, pointer into SV heap

( 8,N) = EOS type (if any)
( 9,N) = number of equation of state

internal state variables (
(10,N) = IPESV, pointer into SV heap

DATMAT (MCONS+MCONES,NEMBLK) Material Properties Data Structure:

(1, N) = PROP(I)

(MCONS-1, N) = original dilatational
modulus

(MCONS, N) = original density

(MCONS+I, N) = EOSDAT(I)

(MCONS+MCONES,N) = original wave speed

squared
DELETE (NEMBLK) Material Block Deletion Time
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B.6 Contact Options
B.6.1 Contact Surface Arrays

Name Dimension

Description

KLSURF (20,NCONT)

CLSU (4,NCONT)

=]
11

KSLIST (LCDATA)

CONDAT (LCTEMP)

B.8.2 Rigid Surface Arrays

Name Dimension

Contact Surface Integer Data Structure
(the following data occurs in pairs, one
per surface):
( 1,N) = side set id
( 3,N) = pointer to side set element list
( 5,N) = pointer to side set node list
( 7,K) = pointer to data structures in

KSLIST heap
( 9,N) = number of faces

(11,N8) = number of nodes

(13,N) = maximum face connections

(15,N) = constrained node list vector
Contact Surface Real Data Structure:

(1,N) = partition balance factor

(2,N) = static coefficient of friction

(3,N) = high velocity coefficient of
friction

(4,N) = decay factor

Contact Surface Data Heap; contains all
data structures described in

Section 6.2.2 for all contact surfaces.
Contact Surface Scratch Heap; provides

scratch storage for the contact
algorithm.

Description

KRIGID (2,NRIGID)

RIGID (9,NRIGID)

Rigid Surface Integer Data Structure:
(1,NM) side set id
(2,N)

n

pointer to node list (first in

NSNODE, then in KSLIST)
(3,N) = number of nodes

Rigid Surface Real Data Structure:

(1,N) = static coefficient of friction
(2,N) = high velocity coefficient of - . ..
friction A




B.7 Kinematic Constraint Gptions

B.7.1 No Displacement Array

Name Dimension

(3,N) = decay factor
(4,N) = surface point vector
(7,N) = surface outward unit normal

vector

Description

KDISPL (4,NODISP)

B.7.2 Prescribed Velocity Arrays

Name Dimension

No Displacement Integer Data Structure:
(1,N) = node set id

(2,N) = pointer to node list
(3,N) = component option:

1 = x

2=y

3 =z
(4,N) = number of nodes

Description

KPVELL (5,NVELBC)

PVBC (8,NVELBC)
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Prescribed Velocity Integer Data

Structure:

node set id
pointer to node list
function id, changed to function

number in TELALL
component option:

(1,N)
(2,N)
(3,N)

(4,N)
1 =x

=Y

=z

cylindrical

tangential

[{]

normal
spherical

~N OO ;e W
]

(5,N) number of nodes

Prescribed Velocity Real Data Structure:

(1,N) = scale factor
(2,N) = origin vector
(5,N)

CJ

velocity at last time step N




e (6,N) = unit normal vector

B.7.3 Prescribed Acceleration Arrays

Name Dimension Description
_ KPACCL (5,NACCBC) Prescribed Acceleration Integer Data
\ Structure:
(1,N) = node set id
(2,N) = pointer to node list
(3,N) = function id, changed to function
number in TELALL
(4,N) = component option:
1 =x
2=y
3 =2
(5,N) = number of nodes
PABC (NACCBC) Prescribed Acceleration Scale Factor
B.8 Load Options
( B.8.1 Prescribed Nodal Force Arrays
Name Dimension Description
KFORCE (5,NFORCE) Prescribed Nodal Force Integer Data
Structure:
(1,N) = node set id
(2,N) = pointer to node list
(3,N) = function id, changed to function
number in TELALL
(4,N) = component option:
1 =x
2=y
3 =z
| 4 = cylindrical
| 5 = tangential
1 - 6 = normal
‘ <;> 7 = spherical
(5,N) = number of nodes
PFORCE (7,NFORCE) Prescribed Nodal Force Real Data
Structure: ‘

(1,N) = scale factor
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(2,N) origin vector

(5,N) = unit normal vector
B.8.2 Prescribed Pressure Arrays
Name Dimension Description —
KPBC  (4,NPRBC) Prescribed Pressure Integer Data N
Structure:
(1,N) = side set id
(2,N) = pointer to side set node list
(3,N) = function id, changed to function
number in TELALL
(4,N) = number of nodes
PBCDAT (NPRBC) Prescribed Pressure Scals Factor
B.8.3 Moving Pressure Arrays
Name Dimension Description
KMPBC (5,NMPBC) Moving Pressure Integer Data Structure:
(1,N) = side set id
(2,N) = pointer to side set node list (:
(3,N) = number of sides
(4,N) = first function id, changed to
function number in TELALL
(4,N) = second function id, changed to
function number in TELALL
PMPBC (6,NMPBC) Moving Pressure Real Data Structure:
(1,N) = point vector
(4,N) = scale factor
(5,N8) = arrival time
(6,N) = propagation speed

XMPBC (3,NSLIST) Moving Pressure Nodal Data Structure
(allocated for all side side nodes for

efficiency):
(1,N) = linear coefficient
(2,N) = exponential coefficient é
(3,N) = delay time ’
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B.9 Initial Velocity Options
B.9.1 Initial Node Set Velocity Arrays

Name Dimension Description
KVELFL (3,NIVFLG) Initial Velocity by Node Set Integer

Data Structure:
(1,N) = node set id

(2,N) = pointer to node list
(3,N) = number of nodes

VELFL (NSPC,NIVFLG) Initial Velocity by Node Set Vector

B.9.2 Initial Material Block Velocity Arrays

Name Dimension Description

KVELM (NIVMAT) Initial Velocity by Material Block ID

VELM  (NSPC,NIVFLG) Initial Velocity by Material Block
Vector

B.9.3 Initial Angular Velocity Arrays

Name Dimension Description
KANGV  (NANGV) Initial Angular Velocity Material ID
ANGVEL (6,NANGV) Initial Angular Velocity Real Data
‘ Structure:
(1,N) = angular velocity vector
(4,N) = origin vector

B.10 Miscellaneous Options

B.10.1 User Function Arrays

PRONTO supports user supplied functions for a number of options. These func-
tions are stored as an arbitrary number of abscissa-ordinate pairs. PRONTO user
functions are generally treated as piecewise linear and monotonically increasing.

Name Dimension Description
KFDAT (3,NFUNC) User Function Integer Data Structure:
(1,N) = function id

(2,N) = number of data points
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(3,N) = pointer to the data points
FUNCS (2,NTOTFV) User Function Data Points

B.10.2 Detonation Point Arrays

Name Dimension Description -
KDETPT (NDETPT) Detonation Point Material ID {')
DETPT (4,NDETPT) Detonation Point Real Data Structure:

(1,N) = detonation point vector

(4,N) = detonation time

B.10.3 Nonreflecting Boundary Array

Name Dimension Description
KQUIET (4,NQUIET) Nonreflecting Boundary Integer Data
Structure:
(1,N) = side set id
(2,N) = pointer to side set element list
(3,N) = pointer to side set node list
(4,N) = number of sides

@)

B.10.4 Adaptive Element Deletion Arrays

Name Dimension Description
KDEATH (4,NDEATH) Adaptive Element Deletion Integer Data
Structure:
(1,N) = material id
(2,N) = material type
(3,N) = deletion variable:
-5 = internal energy density
-6 = vonMises stress
-7 = pressure
-8 = maximum principal stress
+I = internal state variable I
(4,N) = mode

of deletion: @
1 = minimum
2 = maximum

: 3 = absolute value
DEATH (NDEATE) Adaptive Element Deletion Critical Value




N
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B.11 Vector Block Arrays

To promote vectorization, PRONTO often processes in vector blocks. Large blocks
of data, such as material blocks, are subdivided into vector blocks of length NEBLK or
less. All elements in a vector block are processed simultaneously. A number of scratch
arrays are used in these vector block processing loops. For this purpose, PRONTO
allocates the Vector Block Scratch Array, SCREL(NEBLK,128). Various routines then
access scratch storage by simply referencing a column of this array.

Note that the Vector Block Scratch Array and the Contact Surface Scratch Heap
are coresident. PRONTO allocates memery for the larger of their respective dimen-

sions.

B.12 Boundary Condition Sets

The following arrays are read directly from the GENESIS file, which is described

in Reference [2].

B.12.1 Node Set Arrays

Name Dimension Description

KFLAGS (NBCNOD) Node Set ID

NPFLAG (NBCNOD) Node Set Node List Length

NFLOC (NBCNOD) Node Set Node List Pointer

IBC (NNLIST) Node Set Node List Heap; contains all
the node set lists. :

VALNOD (NNLIST) Node Set Node Factor Heap; contains a
multiplication factor for each node set
node.

B.12.2 Side Set Arrays

Name Dimension Description

NSFLG (NBCSID) Side Set ID

NSLEN (NBCSID) Side Set Element List Length

NVLEN (NBCSID) Side Set Node List Length

NSPTR (NBCSID) Side Set Element List Pointer

NVPTR (NBCSID) Side Set Node List Pointer

NELEMS (NSLIST) Side Set Node Element Heap; contains all

the side set element lists.
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NSNODE (NESNS,NSLIST) - Side Set Node List Heap; contains all

the side set node lists.
SVALUE (NESNS,NSLIST) Side Set Node Factor Heap; contains a

multiplication factor for each side set

node.

B.13 EXODUS Data Base —

-

PRONTO allows the user to select what variables will be written to the EXO-
DUS [3] output file. A default set of EXODUS output variables is defined, which
may be overcidden by user commands. The following arrays are allocated in the main
routine to set up the data base.

B.13.1 Nodal Variable Qutput Arrays

Name Dimension Description
NODWR (5) Nodal Variable Option Flags, a 1
indicates the quantity is written:

(1) = displacement (default=1)
(2) = velocity (default=1)
(3) = acceleration (default=1) —-
(4) = lumped mass (default=0) L;
(5) = reaction (default=0)

LISTND (13)=*8 Nodal Variable Option Names; contains

the list of nodal variable names to be
written on the EXODUS data base. The
defaults are:

(1) = DISPLX

(2) = DISPLY

(3) = DISPLZ

(4) = VELX

(5) = VELY

(6) = VELZ

(7) = ACCLX

(8) = ACCLY

(9) = ACCLZ :
(10) = null @

(13) = null




B.13.2 Element Output Arrays

TN

Name Dimension Description
NELWR (11) Element Variable Option Flags, a 1
indicates the quantity is written:
( 1) = stress (default =1)
e ( 2) = cnergy (default=1)
- ( 3) = hourglass (default=0)
( 4) = strain (default=0)
( 5) = strech (default=0)
( 6) = rotation (default=0)
( 7) = ratedfm (default=0)
( 8) = density (default=0)
( 9) = pressure (default=0)
? (10) = vonmises (default=0)
| (11) = bulkq (default=0)
| LISTEL (25) Element Variable Option Names; contains
; the list of element variable names to be
| written on the EXODUS data base. The
| defaults are:
| (1) = SIGXX
(’ ( 2) = SIGYY
) ( 3) = 81622
( 4) = TAUXY
( 5) = TAUYZ
( 6) = TAUZX
( 7) = ENERGY
( 8) = null
(25) = null
B.13.3 State Variable Output Arrays
Name Dimension : Description ,
LISTSV (MFIELD) State Variable Output Names; contains
<”> the list of state variable names to be
written on the EXODUS data base. Therae

are no defaults.
MAPIE (NEMBLK,NSVLST) State Variable Option Map; a positive
number indicates that a variable will be

written.
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Each internal state variable which the user specifies for the EXODUS data base
is entered into the LISTSV array. Subroutine SVLIST is called for each user specified
name, for each material block to search for a state variable match. If a match is found,
the internal index of that variable is entered into the MAPIE array. If a particular
material model does not have that internal state variable. a zero is entered into the
map. This mapping is required because totally different material models may have the
same internal state variable (e.g., equivalent plastic strain), but in different locations.
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C. ADDING A NEW CONSTITUTIVE MODEL TO
PRONTO

PRONTO was designed from the beginning to serve as a testbed for new consti-
tutive models and algorithms. We have incorporated a material interface subroutine
which allows you (the constitutive model developer) to add a new material model with
very little effort. We have purposely designed this interface so that you do not have
to understand the inner workings of the finite element code, especially with respect to
the allocation and management of computer memory. If the instructions in subroutine
MATINT are followed correctly, the computer program will handle all memory alloca-
tion, material data reading, and material data printing. There are three steps that you
should follow to add a new model.

STEP I

Subroutine MATINT contains instructions via comment cards within the FORTRAN
which outline the steps the you should follow to add your new material model. Most
of the changes required involve adding or changing numbers in DATA or PARAMETER
statements. Since we have no foreknowledge of what the material constants represent
for a particular material, we require that a few lines of FORTRAN be added which tell
the code what the initial dilatational modulus (X + 24) is for the material. This value
must be stored in the variable DATMOD in step 12. At the same place in the code, you
can calculate any combinations of the input material constants that may be required in
the constitutive subroutine. (e.g. bulk modulus from Young’s modulus and Poisson’s
raiiv).

You are restricted to twenty characters for your material name, material cues and
internal state variable names which you define in subroutine MATINT. The names may
have have multiple words, separated by blanks (i.e., YOUNGS MODULUS). You must define
names such that each word is unique to the first three characters. This means that
you may define material cues C1, C2, C3, etc. but not CON1, CON2, CON3, etc. All words
must be uppercase only since the free field reader is case insensitive. Finally, please do
not use special characters in your words as we cannot guarantee the results.

We reiterate that all of the steps which you must take when adding a new material
model are outlined in detail via comments within the FORTRAN in subroutine MATINT.




STEP 11

This step is optional; it is only required if the new material model contains internal
state variables which must be initialized to some value other than zero (we initialize all
internal state variables to zero by default). If state variables must be initialized, you
must add an ELSE IF block to subroutine SVINIT for this material. This block should
read:

ELSE IF( MKIND .EQ. # ) THEN

initialize your internal
state variables here

Your material number, #, corresponds to the position where your material resides
within the list of materials defined in subroutine MATINT. Generally, a new material
is added at the end of the list; your material number would then be the same as the
number of defined materials in MATINT, which you must increment in step I. This step
should be obvious from looking at how other material models are coded in SVINIT.
Please use comments for your material.

STEP III

You must add in subroutine UPDSTR the call to your material subroutine. You may
call your material subroutine any name you wish, but we recommend our convention:
MAT#, where # is your material number as described above under STEP II. The call is
inclnded by adding an ELSE IF block to subroutine UPDSTR which should read:

ELSE IF( MKIND .EQ. # ) THEN ‘
CALL your subroutine( .... your argument list .... )

This step should be obvious from looking at how other material models are coded
in UPDSTR. Please use comments for your material so that years from now we have some
chance of figuring out what was added to the code.

£
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